aboutsummaryrefslogtreecommitdiffstats
path: root/utils
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-05-26 10:50:03 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-05-26 10:50:03 -0500
commit639686cde9e43b4ad18f9b56960da3f5e8c697dd (patch)
tree45c7d9b7e98ea0094aa169604dacd72ae89ed867 /utils
parentf6645a19974f87166460a9baceade6817212a319 (diff)
downloadGolemFlavor-639686cde9e43b4ad18f9b56960da3f5e8c697dd.tar.gz
GolemFlavor-639686cde9e43b4ad18f9b56960da3f5e8c697dd.zip
Sat May 26 10:50:03 CDT 2018
Diffstat (limited to 'utils')
-rw-r--r--utils/gf.py3
-rw-r--r--utils/plot.py5
2 files changed, 5 insertions, 3 deletions
diff --git a/utils/gf.py b/utils/gf.py
index 59b575e..02231f0 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -95,7 +95,8 @@ def setup_fitter(args, asimov_paramset):
if args.data is DataType.ASIMOV:
setup_asimov(fitter, asimov_paramset)
elif args.data is DataType.REALISATION:
- setup_realisation(fitter, asimov_paramset, args.seed)
+ seed = args.seed if args.seed is not None else 0
+ setup_realisation(fitter, asimov_paramset, seed)
elif args.data is DataType.REAL:
print 'Using MagicTau DATA'
return fitter
diff --git a/utils/plot.py b/utils/plot.py
index 4e1a58b..7a82f2b 100644
--- a/utils/plot.py
+++ b/utils/plot.py
@@ -14,6 +14,7 @@ import socket
from copy import deepcopy
import numpy as np
+import numpy.ma as ma
from scipy import interpolate
import matplotlib as mpl
@@ -269,7 +270,7 @@ def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
print 'data', data
print 'data.shape', data.shape
- scales, statistic = data.T
+ scales, statistic = ma.compress_rows(data).T
tck, u = interpolate.splprep([scales, statistic], s=0)
scales, statistic = interpolate.splev(np.linspace(0, 1, 1000), tck)
print 'scales', scales
@@ -496,7 +497,7 @@ def plot_sens_fixed_angle_pretty(data, outfile, outformat, args):
bc_limit = best_limits[dim]
# ax.axvline(x=np.log10(bc_limit[1]), color=bc_limit[2], alpha=0.7, linewidth=1.5)
- scales, statistic = data[idim][isrc][ian].T
+ scales, statistic = ma.compress_rows(data[idim][isrc][ian]).T
tck, u = interpolate.splprep([scales, statistic], s=0)
scales, statistic = interpolate.splev(np.linspace(0, 1, 1000), tck)
min_idx = np.argmin(scales)