diff options
Diffstat (limited to 'bout/plot.py')
| -rw-r--r-- | bout/plot.py | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/bout/plot.py b/bout/plot.py new file mode 100644 index 0000000..717cf81 --- /dev/null +++ b/bout/plot.py @@ -0,0 +1,129 @@ +import os + +import numpy as np +import numpy.ma as ma + +import matplotlib as mpl +mpl.use('Agg') +from matplotlib import pyplot as plt +from matplotlib.offsetbox import AnchoredText +from matplotlib import rc + +rc('text', usetex=False) +rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18}) + +fix_sfr_mfr = [ + (1, 1, 1, 1, 2, 0), + # (1, 1, 1, 1, 0, 0), + (1, 1, 1, 0, 1, 0), +] + +# FR +# dimension = [3, 6] +dimension = [3, 6] +sigma_ratio = ['0.01'] +energy_dependance = 'spectral' +spectral_index = -2 +binning = [1e4, 1e7, 5] +fix_mixing = 'False' +fix_mixing_almost = 'False' +scale_region = "1E10" + +# Likelihood +likelihood = 'golemfit' +confidence = 2.71 # 90% for 1DOF +outformat = ['png'] + + +def gen_identifier(measured_ratio, source_ratio, dimension, sigma_ratio=0.01): + mr = np.array(measured_ratio) / float(np.sum(measured_ratio)) + sr = np.array(source_ratio) / float(np.sum(source_ratio)) + si = sigma_ratio + out = '_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_single_scale'.format( + int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000), + int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), dimension + ) + return out + + +def get_units(dimension): + if dimension == 3: return r' / GeV' + if dimension == 4: return r'' + if dimension == 5: return r' / GeV^{-1}' + if dimension == 6: return r' / GeV^{-2}' + if dimension == 7: return r' / GeV^{-3}' + if dimension == 8: return r' / GeV^{-4}' + + +def myround(x, base=5, up=False, down=False): + if up == down and up is True: assert 0 + if up: return int(base * np.round(float(x)/base-0.5)) + elif down: return int(base * np.round(float(x)/base+0.5)) + else: int(base * np.round(float(x)/base)) + + +colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'} + +for i_dim, dim in enumerate(dimension): + fig = plt.figure(figsize=(7, 5)) + ax = fig.add_subplot(111) + yranges = [np.inf, -np.inf] + legend_handles = [] + xticks = [r'$\mathcal{O}_{12}$', r'$\mathcal{O}_{13}$', r'$\mathcal{O}_{23}$'] + ax.set_xlim(0, len(xticks)+1) + ax.set_xticklabels([''] + xticks + ['']) + ax.set_xlabel(r'BSM operator angle') + ylabel = r'${\rm log}_{10} \Lambda' + get_units(dim) + r'$' + ax.set_ylabel(ylabel) + for i_frs, frs in enumerate(fix_sfr_mfr): + print '== DIM{0}'.format(dim) + print '== FRS = {0}'.format(frs) + outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}/fix_ifr/0_01/'.format(likelihood, dim, spectral_index) + infile = outchain_head + '/angles_limit/fr_anfr_evidence'+ gen_identifier(frs[:3], frs[-3:], dim) + '.npy' + try: + array = np.load(infile) + except IOError: + print 'failed to open {0}'.format(infile) + continue + print 'array', array + print 'array', array.shape + for i_th in xrange(len(xticks)): + scale, llhs = array[i_th].T + min_llh = np.min(llhs) + delta_llh = 2*(llhs - min_llh) + print 'scale', scale + print 'delta_llh', delta_llh + al = scale[delta_llh < confidence] + if len(al) > 0: + label = '[{0}, {1}, {2}]'.format(frs[3], frs[4], frs[5]) + lim = al[0] + print 'frs, dim, lim = ', frs, dim, lim + if lim < yranges[0]: yranges[0] = lim + if lim > yranges[1]: yranges[1] = lim+4 + line = plt.Line2D( + (i_th+1-0.1, i_th+1+0.1), (lim, lim), lw=3, color=colour[i_frs], label=label + ) + ax.add_line(line) + if i_th == 0: legend_handles.append(line) + x_offset = i_frs*0.05 - 0.05 + ax.annotate( + s='', xy=(i_th+1+x_offset, lim), xytext=(i_th+1+x_offset, lim+3), + arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[i_frs]} + ) + else: + print 'No points for DIM {0} FRS {1} NULL {2}!'.format(dim, frs, min_llh) + try: + yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True)) + # ax.set_ylim(yranges) + ax.set_ylim([-30, -20]) + except: pass + + ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right', + title='dimension {0}'.format(dim)) + for ymaj in ax.yaxis.get_majorticklocs(): + ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1) + for xmaj in ax.xaxis.get_majorticklocs(): + ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1) + + for of in outformat: + fig.savefig('../images/freq/lim_DIM{0}.'.format(dim)+of, bbox_inches='tight', dpi=150) |
