aboutsummaryrefslogtreecommitdiffstats
path: root/bout/plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'bout/plot.py')
-rw-r--r--bout/plot.py129
1 files changed, 129 insertions, 0 deletions
diff --git a/bout/plot.py b/bout/plot.py
new file mode 100644
index 0000000..717cf81
--- /dev/null
+++ b/bout/plot.py
@@ -0,0 +1,129 @@
+import os
+
+import numpy as np
+import numpy.ma as ma
+
+import matplotlib as mpl
+mpl.use('Agg')
+from matplotlib import pyplot as plt
+from matplotlib.offsetbox import AnchoredText
+from matplotlib import rc
+
+rc('text', usetex=False)
+rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18})
+
+fix_sfr_mfr = [
+ (1, 1, 1, 1, 2, 0),
+ # (1, 1, 1, 1, 0, 0),
+ (1, 1, 1, 0, 1, 0),
+]
+
+# FR
+# dimension = [3, 6]
+dimension = [3, 6]
+sigma_ratio = ['0.01']
+energy_dependance = 'spectral'
+spectral_index = -2
+binning = [1e4, 1e7, 5]
+fix_mixing = 'False'
+fix_mixing_almost = 'False'
+scale_region = "1E10"
+
+# Likelihood
+likelihood = 'golemfit'
+confidence = 2.71 # 90% for 1DOF
+outformat = ['png']
+
+
+def gen_identifier(measured_ratio, source_ratio, dimension, sigma_ratio=0.01):
+ mr = np.array(measured_ratio) / float(np.sum(measured_ratio))
+ sr = np.array(source_ratio) / float(np.sum(source_ratio))
+ si = sigma_ratio
+ out = '_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_single_scale'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000),
+ int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), dimension
+ )
+ return out
+
+
+def get_units(dimension):
+ if dimension == 3: return r' / GeV'
+ if dimension == 4: return r''
+ if dimension == 5: return r' / GeV^{-1}'
+ if dimension == 6: return r' / GeV^{-2}'
+ if dimension == 7: return r' / GeV^{-3}'
+ if dimension == 8: return r' / GeV^{-4}'
+
+
+def myround(x, base=5, up=False, down=False):
+ if up == down and up is True: assert 0
+ if up: return int(base * np.round(float(x)/base-0.5))
+ elif down: return int(base * np.round(float(x)/base+0.5))
+ else: int(base * np.round(float(x)/base))
+
+
+colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
+
+for i_dim, dim in enumerate(dimension):
+ fig = plt.figure(figsize=(7, 5))
+ ax = fig.add_subplot(111)
+ yranges = [np.inf, -np.inf]
+ legend_handles = []
+ xticks = [r'$\mathcal{O}_{12}$', r'$\mathcal{O}_{13}$', r'$\mathcal{O}_{23}$']
+ ax.set_xlim(0, len(xticks)+1)
+ ax.set_xticklabels([''] + xticks + [''])
+ ax.set_xlabel(r'BSM operator angle')
+ ylabel = r'${\rm log}_{10} \Lambda' + get_units(dim) + r'$'
+ ax.set_ylabel(ylabel)
+ for i_frs, frs in enumerate(fix_sfr_mfr):
+ print '== DIM{0}'.format(dim)
+ print '== FRS = {0}'.format(frs)
+ outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}/fix_ifr/0_01/'.format(likelihood, dim, spectral_index)
+ infile = outchain_head + '/angles_limit/fr_anfr_evidence'+ gen_identifier(frs[:3], frs[-3:], dim) + '.npy'
+ try:
+ array = np.load(infile)
+ except IOError:
+ print 'failed to open {0}'.format(infile)
+ continue
+ print 'array', array
+ print 'array', array.shape
+ for i_th in xrange(len(xticks)):
+ scale, llhs = array[i_th].T
+ min_llh = np.min(llhs)
+ delta_llh = 2*(llhs - min_llh)
+ print 'scale', scale
+ print 'delta_llh', delta_llh
+ al = scale[delta_llh < confidence]
+ if len(al) > 0:
+ label = '[{0}, {1}, {2}]'.format(frs[3], frs[4], frs[5])
+ lim = al[0]
+ print 'frs, dim, lim = ', frs, dim, lim
+ if lim < yranges[0]: yranges[0] = lim
+ if lim > yranges[1]: yranges[1] = lim+4
+ line = plt.Line2D(
+ (i_th+1-0.1, i_th+1+0.1), (lim, lim), lw=3, color=colour[i_frs], label=label
+ )
+ ax.add_line(line)
+ if i_th == 0: legend_handles.append(line)
+ x_offset = i_frs*0.05 - 0.05
+ ax.annotate(
+ s='', xy=(i_th+1+x_offset, lim), xytext=(i_th+1+x_offset, lim+3),
+ arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[i_frs]}
+ )
+ else:
+ print 'No points for DIM {0} FRS {1} NULL {2}!'.format(dim, frs, min_llh)
+ try:
+ yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
+ # ax.set_ylim(yranges)
+ ax.set_ylim([-30, -20])
+ except: pass
+
+ ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right',
+ title='dimension {0}'.format(dim))
+ for ymaj in ax.yaxis.get_majorticklocs():
+ ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
+ for xmaj in ax.xaxis.get_majorticklocs():
+ ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
+
+ for of in outformat:
+ fig.savefig('../images/freq/lim_DIM{0}.'.format(dim)+of, bbox_inches='tight', dpi=150)