aboutsummaryrefslogtreecommitdiffstats
path: root/mc_unitary.py
diff options
context:
space:
mode:
Diffstat (limited to 'mc_unitary.py')
-rwxr-xr-xmc_unitary.py223
1 files changed, 223 insertions, 0 deletions
diff --git a/mc_unitary.py b/mc_unitary.py
new file mode 100755
index 0000000..738191f
--- /dev/null
+++ b/mc_unitary.py
@@ -0,0 +1,223 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Sample points only assuming unitarity
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from utils import fr as fr_utils
+from utils import llh as llh_utils
+from utils import mcmc as mcmc_utils
+from utils import misc as misc_utils
+from utils import plot as plot_utils
+from utils.enums import MCMCSeedType, ParamTag, PriorsCateg
+from utils.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ hypo_paramset = []
+
+ hypo_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+
+ for parm in hypo_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ hypo_paramset = ParamSet(hypo_paramset)
+
+ tag = ParamTag.BESTFIT
+ flavour_angles = fr_utils.fr_to_angles(args.source_ratio)
+
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, hypo_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--source-ratio', type=float, nargs=3, default=[1, 2, 0],
+ help='Set the source flavour ratio'
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='26',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def gen_identifier(args):
+ f = '_INJ_{0}'.format(misc_utils.solve_ratio(args.source_ratio))
+ return f
+
+
+def gen_figtext(args, asimov_paramset):
+ f = ''
+ f += 'Source ratio = {0}'.format(
+ misc_utils.solve_ratio(args.source_ratio)
+ )
+ for param in asimov_paramset:
+ f += '\nInjected {0:20s} = {1:.3f}'.format(
+ param.name, param.nominal_value
+ )
+ return f
+
+
+def triangle_llh(theta, args, hypo_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(hypo_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
+ )
+ for idx, param in enumerate(hypo_paramset):
+ param.value = theta[idx]
+
+ return 1. # Flat LLH
+
+
+def ln_prob(theta, args, hypo_paramset):
+ dc_hypo_paramset = deepcopy(hypo_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ hypo_paramset = dc_hypo_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
+
+ prefix = ''
+ outfile = args.datadir + '/mc_unitary' + prefix + gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'hypo_paramset', hypo_paramset
+
+ if args.run_mcmc:
+ ln_prob_eval = partial(
+ ln_prob,
+ hypo_paramset = hypo_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(hypo_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.threads
+ )
+
+ mmxs = map(fr_utils.angles_to_u, samples)
+ frs = np.array(
+ [fr_utils.u_to_fr(args.source_ratio, x) for x in mmxs]
+ )
+ mcmc_utils.save_chains(frs, outfile)
+
+ of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
+ plot_utils.chainer_plot(
+ infile = outfile+'.npy',
+ outfile = of,
+ outformat = ['png'],
+ args = args,
+ llh_paramset = hypo_paramset,
+ fig_text = gen_figtext(args, hypo_paramset)
+ )
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()