aboutsummaryrefslogtreecommitdiffstats
path: root/sens.py
diff options
context:
space:
mode:
Diffstat (limited to 'sens.py')
-rwxr-xr-xsens.py35
1 files changed, 14 insertions, 21 deletions
diff --git a/sens.py b/sens.py
index 22d464a..ba2d82b 100755
--- a/sens.py
+++ b/sens.py
@@ -23,8 +23,9 @@ from utils import gf as gf_utils
from utils import llh as llh_utils
from utils import misc as misc_utils
from utils import mn as mn_utils
-from utils.enums import Likelihood, ParamTag
-from utils.enums import PriorsCateg, SensitivityCateg, StatCateg, Texture
+from utils.enums import str_enum
+from utils.enums import DataType, Likelihood, ParamTag
+from utils.enums import PriorsCateg, StatCateg, Texture
from utils.param import Param, ParamSet
@@ -77,30 +78,23 @@ def get_paramsets(args, nuisance_paramset):
for parm in llh_paramset:
parm.value = args.__getattribute__(parm.name)
- tag = ParamTag.MMANGLES
- llh_paramset.extend([
- Param(name='np_s_12^2', value=0.5, ranges=[0., 1.], std=0.2, tex=r'\tilde{s}_{12}^2', tag=tag),
- Param(name='np_c_13^4', value=0.5, ranges=[0., 1.], std=0.2, tex=r'\tilde{c}_{13}^4', tag=tag),
- Param(name='np_s_23^2', value=0.5, ranges=[0., 1.], std=0.2, tex=r'\tilde{s}_{23}^2', tag=tag),
- Param(name='np_dcp', value=np.pi, ranges=[0., 2*np.pi], std=0.2, tex=r'\tilde{\delta_{CP}}', tag=tag)
- ])
-
boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
tag = ParamTag.SCALE
llh_paramset.append(
Param(
name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
- tex=r'{\rm log}_{10}\left (\Lambda^{-1}'+get_units(args.dimension)+r'\right )',
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
tag=tag
)
)
llh_paramset = ParamSet(llh_paramset)
tag = ParamTag.BESTFIT
- if args.data in [DataType.ASIMOV, DataType.REALISATION]:
- flavour_angles = fr_to_angles(args.injected_ratio)
+ if args.data is not DataType.REAL:
+ flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
else:
- flavour_angles = fr_to_angles([1, 1, 1])
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
asimov_paramset.extend(gf_nuisance)
asimov_paramset.extend([
@@ -136,8 +130,9 @@ def process_args(args):
else:
args.eval_segment = int(args.eval_segment)
- if args.stat_method is StatCateg.FREQUENTIST and \
- args.likelihood is Likelihood.GOLEMFIT:
+ if args.stat_method is StatCateg.BAYESIAN:
+ args.likelihood = Likelihood.GOLEMFIT
+ elif args.stat_method is StatCateg.FREQUENTIST:
args.likelihood = Likelihood.GF_FREQ
if args.texture is Texture.NONE:
@@ -191,9 +186,7 @@ def main():
# Scale and BSM mixings will be fixed.
scale_prm = llh_paramset.from_tag(ParamTag.SCALE)[0]
- base_mn_pset = llh_paramset.from_tag(
- [ParamTag.SCALE, ParamTag.MMANGLES], invert=True
- )
+ base_mn_pset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
# Array of scales to scan over.
boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
@@ -228,8 +221,8 @@ def main():
scale_prm.value = scale
if args.stat_method is StatCateg.BAYESIAN:
- identifier = 'b{0}_{1}_sce{2}_sca{3}'.format(
- args.eval_segment, args.segments, int(args.texture), scale
+ identifier = 'b{0}_{1}_{2}_sca{3}'.format(
+ args.eval_segment, args.segments, str_enum(args.texture), scale
)
try:
stat = mn_utils.mn_evidence(