aboutsummaryrefslogtreecommitdiffstats
path: root/sens.py
diff options
context:
space:
mode:
Diffstat (limited to 'sens.py')
-rwxr-xr-xsens.py480
1 files changed, 480 insertions, 0 deletions
diff --git a/sens.py b/sens.py
new file mode 100755
index 0000000..578528c
--- /dev/null
+++ b/sens.py
@@ -0,0 +1,480 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+HESE BSM flavour ratio analysis script
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from functools import partial
+
+import numpy as np
+import numpy.ma as ma
+
+from utils import fr as fr_utils
+from utils import gf as gf_utils
+from utils import likelihood as llh_utils
+from utils import misc as misc_utils
+from utils import plot as plot_utils
+from utils.enums import EnergyDependance, Likelihood, ParamTag
+from utils.enums import SensitivityCateg, StatCateg
+from utils.fr import estimate_scale, normalise_fr
+from utils.misc import enum_parse, parse_bool
+from utils.param import Param, ParamSet, get_paramsets
+
+from utils import multinest as mn_utils
+
+
+def define_nuisance():
+ """Define the nuisance parameters to scan over with default values,
+ ranges and sigma.
+ """
+ tag = ParamTag.NUISANCE
+ nuisance = ParamSet(
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0. , 50.], std=0.3, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 50.], std=0.05, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 50.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0.1, 10.], ranges=[0. , 50.], std=0.1, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[1. , 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ )
+ return nuisance
+
+
+def nuisance_argparse(parser):
+ nuisance_paramset = define_nuisance()
+ for parm in nuisance_paramset:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ if args.fix_mixing and args.fix_scale:
+ raise NotImplementedError('Fixed mixing and scale not implemented')
+ if args.fix_mixing and args.fix_mixing_almost:
+ raise NotImplementedError(
+ '--fix-mixing and --fix-mixing-almost cannot be used together'
+ )
+ if args.mn_run and args.fix_scale:
+ raise NotImplementedError(
+ '--mn-run and --fix-scale cannot be used together'
+ )
+
+ args.measured_ratio = normalise_fr(args.measured_ratio)
+ if args.fix_source_ratio:
+ args.source_ratio = normalise_fr(args.source_ratio)
+
+ if args.energy_dependance is EnergyDependance.SPECTRAL:
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+ if not args.fix_scale:
+ args.scale = estimate_scale(args)
+ args.scale_region = (args.scale/args.scale_region, args.scale*args.scale_region)
+
+ if args.mn_eval_bin.lower() == 'all':
+ args.mn_eval_bin = None
+ else:
+ args.mn_eval_bin = int(args.mn_eval_bin)
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--outfile', type=str, default='./untitled',
+ help='Path to output chains'
+ )
+ parser.add_argument(
+ '--run-method', default='full',
+ type=partial(enum_parse, c=SensitivityCateg), choices=SensitivityCateg,
+ help='Choose which type of sensivity plot to make'
+ )
+ parser.add_argument(
+ '--stat-method', default='bayesian',
+ type=partial(enum_parse, c=StatCateg), choices=StatCateg,
+ help='Statistical method to employ'
+ )
+ fr_utils.fr_argparse(parser)
+ gf_utils.gf_argparse(parser)
+ llh_utils.likelihood_argparse(parser)
+ mn_utils.mn_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args)
+ scale = llh_paramset.from_tag(ParamTag.SCALE)[0]
+ outfile = misc_utils.gen_outfile_name(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ mmangles = llh_paramset.from_tag(ParamTag.MMANGLES)
+ if args.run_method is SensitivityCateg.FULL:
+ mn_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)]
+ elif args.run_method is SensitivityCateg.FIXED_ANGLE or \
+ args.run_method is SensitivityCateg.CORR_ANGLE:
+ nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
+ mn_paramset_arr = []
+ for x in xrange(3):
+ mn_paramset_arr.append(
+ ParamSet([prms for prms in nscale_pmset
+ if mmangles[x].name != prms.name])
+ )
+
+ out = args.outfile+'/{0}/{1}/fr_evidence'.format(args.stat_method, args.run_method) \
+ + misc_utils.gen_identifier(args)
+ if args.mn_run:
+ if args.likelihood is Likelihood.GOLEMFIT:
+ fitter = gf_utils.setup_fitter(args, asimov_paramset)
+ else: fitter = None
+
+ scan_scales = np.linspace(
+ np.log10(args.scale_region[0]), np.log10(args.scale_region[1]), args.mn_bins
+ )
+ if args.run_method is SensitivityCateg.CORR_ANGLE:
+ scan_angles = np.linspace(0, 1, eval_dim)
+ else: scan_angles = np.array([0])
+ print 'scan_scales', scan_scales
+ print 'scan_angles', scan_angles
+
+ if args.mn_eval_bin is None:
+ eval_dim = args.mn_bins
+ else: eval_dim = 1
+
+ if args.run_method is SensitivityCateg.FULL:
+ evidence_arr = np.full((eval_dim, 2), np.nan)
+ elif args.run_method is SensitivityCateg.FIXED_ANGLE:
+ evidence_arr = np.full((len(mn_paramset_arr), eval_dim, 2), np.nan)
+ elif args.run_method is SensitivityCateg.CORR_ANGLE:
+ evidence_arr = np.full((len(mn_paramset_arr), eval_dim, eval_dim, 3), np.nan)
+
+
+ for idx_scen, mn_paramset in enumerate(mn_paramset_arr):
+ print '|||| SCENARIO = {0}'.format(idx_scen)
+ for x in mmangles: x.value = 0.
+ if args.run_method is SensitivityCateg.FIXED_ANGLE:
+ if idx_scen == 0 or idx_scen == 2:
+ mmangles[idx_scen].value = np.sin(np.pi/2.)**2
+ """s_12^2 or s_23^2"""
+ elif idx_scen == 1:
+ mmangles[idx_scen].value = np.cos(np.pi/2.)**4
+ """c_13^4"""
+
+ for idx_an, an in enumerate(scan_angles):
+ if args.run_method is SensitivityCateg.CORR_ANGLE:
+ print '|||| ANGLE = {0:<04.2}'.format(an)
+ mmangles[idx_an].value = an
+
+ for idx_sc, sc in enumerate(scan_scales):
+ if args.mn_eval_bin is not None:
+ if idx_sc == args.mn_eval_bin:
+ out += '_scale_{0:.0E}'.format(np.power(10, sc))
+ if args.run_method is SensitivityCateg.CORR_ANGLE:
+ out += '_angle_{0:>03}'.format(int(an*100))
+ break
+ else: continue
+
+ print '|||| SCALE = {0:.0E}'.format(np.power(10, sc))
+ scale.value = sc
+ try:
+ a_lnZ = mn_utils.mn_evidence(
+ mn_paramset = mn_paramset,
+ llh_paramset = llh_paramset,
+ asimov_paramset = asimov_paramset,
+ args = args,
+ fitter = fitter
+ )
+ except:
+ print 'Failed run, continuing'
+ continue
+ print '## Evidence = {0}'.format(a_lnZ)
+ if args.run_method is SensitivityCateg.FULL:
+ evidence_arr[idx_sc] = np.array([sc, a_lnZ])
+ elif args.run_method is SensitivityCateg.FIXED_ANGLE:
+ evidence_arr[idx_scen][idx_sc] = np.array([sc, a_lnZ])
+ elif args.run_method is SensitivityCateg.CORR_ANGLE:
+ evidence_arr[idx_scen][idx_an][idx_sc] = np.array([an, sc, a_lnZ])
+
+ misc_utils.make_dir(out)
+ print 'Saving to {0}'.format(out+'.npy')
+ np.save(out+'.npy', np.array(evidence_arr))
+
+ if args.plot_multinest:
+ if args.mn_run: raw = evidence_arr
+ else: raw = np.load(out+'.npy')
+ data = ma.masked_invalid(raw, 0)
+
+ basename = os.path.dirname(out) + '/mnrun/' + os.path.basename(out)
+ baseoutfile = basename[:5]+basename[5:].replace('data', 'plots')
+ if args.run_method is SensitivityCateg.FULL:
+ plot_utils.plot_multinest(
+ data = data,
+ outfile = baseoutfile,
+ outformat = ['png'],
+ args = args,
+ scale_param = scale
+ )
+ elif args.run_method is SensitivityCateg.FIXED_ANGLE:
+ for idx_scen in xrange(len(mn_paramset_arr)):
+ print '|||| SCENARIO = {0}'.format(idx_scen)
+ outfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
+ if idx_scen == 0: label = r'$\mathcal{O}_{12}=\frac{1}{2}$'
+ elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\frac{1}{2}$'
+ elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\frac{1}{2}$'
+ plot_utils.plot_multinest(
+ data = data[idx_scen],
+ outfile = outfile,
+ outformat = ['png'],
+ args = args,
+ scale_param = scale,
+ label = label
+ )
+ elif args.run_method is SensitivityCateg.CORR_ANGLE:
+ for idx_scen in xrange(len(mn_paramset_arr)):
+ print '|||| SCENARIO = {0}'.format(idx_scen)
+ basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
+ if idx_scen == 0: label = r'$\mathcal{O}_{12}='
+ elif idx_scen == 1: label = r'$\mathcal{O}_{13}='
+ elif idx_scen == 2: label = r'$\mathcal{O}_{23}='
+ for idx_an, an in enumerate(scan_angles):
+ print '|||| ANGLE = {0:<04.2}'.format(an)
+ outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an)
+ label += r'{0:<04.2}$'.format(an)
+ plot_utils.plot_multinest(
+ data = data[idx_scen][idx_an][:,1:],
+ outfile = outfile,
+ outformat = ['png'],
+ args = args,
+ scale_param = scale,
+ label = label
+ )
+
+ # dirname = os.path.dirname(out)
+ # plot_utils.bayes_factor_plot(
+ # dirname=dirname, outfile=out, outformat=['png'], args=args
+ # )
+
+ # out = args.angles_lim_output+'/fr_an_evidence' + misc_utils.gen_identifier(args)
+ # if args.run_angles_limit:
+ # import pymultinest
+
+ # scenarios = [
+ # [np.sin(np.pi/2.)**2, 0, 0, 0],
+ # [0, np.cos(np.pi/2.)**4, 0, 0],
+ # [0, 0, np.sin(np.pi/2.)**2, 0],
+ # ]
+ # p = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True)
+ # n_params = len(p)
+ # prior_ranges = p.seeds
+
+ # if not args.run_llh and args.likelihood is Likelihood.GOLEMFIT:
+ # fitter = gf_utils.setup_fitter(args, asimov_paramset)
+ # else: fitter = None
+
+ # def CubePrior(cube, ndim, nparams):
+ # # default are uniform priors
+ # return ;
+
+ # if args.bayes_eval_bin is not None:
+ # data = np.zeros((len(scenarios), 1, 2))
+ # else: data = np.zeros((len(scenarios), args.bayes_bins, 2))
+ # mm_angles = llh_paramset.from_tag(ParamTag.MMANGLES)
+ # sc_angles = llh_paramset.from_tag(ParamTag.SCALE)[0]
+ # for idx, scen in enumerate(scenarios):
+ # scales, evidences = [], []
+ # for yidx, an in enumerate(mm_angles):
+ # an.value = scen[yidx]
+ # for s_idx, sc in enumerate(scan_scales):
+ # if args.bayes_eval_bin is not None:
+ # if s_idx in args.bayes_eval_bin:
+ # if idx == 0:
+ # out += '_scale_{0:.0E}'.format(np.power(10, sc))
+ # else: continue
+
+ # print '== SCALE = {0:.0E}'.format(np.power(10, sc))
+ # sc_angles.value = sc
+ # def lnProb(cube, ndim, nparams):
+ # for i in range(ndim):
+ # prange = prior_ranges[i][1] - prior_ranges[i][0]
+ # p[i].value = prange*cube[i] + prior_ranges[i][0]
+ # for name in p.names:
+ # mcmc_paramset[name].value = p[name].value
+ # theta = mcmc_paramset.values
+ # # print 'theta', theta
+ # # print 'mcmc_paramset', mcmc_paramset
+ # return llh_utils.triangle_llh(
+ # theta=theta,
+ # args=args,
+ # asimov_paramset=asimov_paramset,
+ # mcmc_paramset=mcmc_paramset,
+ # fitter=fitter
+ # )
+ # prefix = 'mnrun/' + os.path.basename(out) + '_'
+ # if args.bayes_eval_bin is not None:
+ # prefix += '{0}_{1}_'.format(idx, s_idx)
+ # print 'begin running evidence calculation for {0}'.format(prefix)
+ # result = pymultinest.run(
+ # LogLikelihood=lnProb,
+ # Prior=CubePrior,
+ # n_dims=n_params,
+ # importance_nested_sampling=True,
+ # n_live_points=args.bayes_live_points,
+ # evidence_tolerance=args.bayes_tolerance,
+ # outputfiles_basename=prefix,
+ # resume=False,
+ # verbose=True
+ # )
+
+ # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params)
+ # a_lnZ = analyzer.get_stats()['global evidence']
+ # print 'Evidence = {0}'.format(a_lnZ)
+ # scales.append(sc)
+ # evidences.append(a_lnZ)
+
+ # for i, d in enumerate(evidences):
+ # data[idx][i][0] = scales[i]
+ # data[idx][i][1] = d
+
+ # misc_utils.make_dir(out)
+ # print 'saving to {0}.npy'.format(out)
+ # np.save(out+'.npy', np.array(data))
+
+ # dirname = os.path.dirname(out)
+ # plot_utils.plot_BSM_angles_limit(
+ # dirname=dirname, outfile=outfile, outformat=['png'],
+ # args=args, bayesian=True
+ # )
+
+ # out = args.angles_corr_output+'/fr_co_evidence' + misc_utils.gen_identifier(args)
+ # if args.run_angles_correlation:
+ # if args.bayes_eval_bin is None: assert 0
+ # import pymultinest
+
+ # scenarios = [
+ # [1, 0, 0, 0],
+ # [0, 1, 0, 0],
+ # [0, 0, 1, 0],
+ # ]
+ # nuisance = mcmc_paramset.from_tag(ParamTag.NUISANCE)
+ # mm_angles = mcmc_paramset.from_tag(ParamTag.MMANGLES)
+ # sc_angles = mcmc_paramset.from_tag(ParamTag.SCALE)[0]
+
+ # if not args.run_mcmc and args.likelihood is Likelihood.GOLEMFIT:
+ # fitter = gf_utils.setup_fitter(args, asimov_paramset)
+ # else: fitter = None
+
+ # def CubePrior(cube, ndim, nparams):
+ # # default are uniform priors
+ # return ;
+
+ # scan_angles = np.linspace(0, 1, args.bayes_bins)
+
+ # if args.bayes_eval_bin is not None:
+ # data = np.zeros((len(scenarios), 1, 1, 3))
+ # else: data = np.zeros((len(scenarios), args.bayes_bins, args.bayes_bins, 3))
+ # for idx, scen in enumerate(scenarios):
+ # for an in mm_angles:
+ # an.value = 0
+ # keep = mcmc_paramset.from_tag(ParamTag.MMANGLES)[idx]
+ # q = ParamSet(nuisance.params + [x for x in mm_angles if x.name != keep.name])
+ # n_params = len(q)
+ # prior_ranges = q.seeds
+
+ # scales, angles, evidences = [], [], []
+ # for s_idx, sc in enumerate(scan_scales):
+ # for a_idx, an in enumerate(scan_angles):
+ # index = s_idx*args.bayes_bins + a_idx
+ # if args.bayes_eval_bin is not None:
+ # if index in args.bayes_eval_bin:
+ # if idx == 0:
+ # out += '_idx_{0}'.format(index)
+ # else: continue
+
+ # print '== SCALE = {0:.0E}'.format(np.power(10, sc))
+ # print '== ANGLE = {0:.2f}'.format(an)
+ # sc_angles.value = sc
+ # keep.value = an
+ # def lnProb(cube, ndim, nparams):
+ # for i in range(ndim-1):
+ # prange = prior_ranges[i][1] - prior_ranges[i][0]
+ # q[i].value = prange*cube[i] + prior_ranges[i][0]
+ # for name in q.names:
+ # mcmc_paramset[name].value = q[name].value
+ # theta = mcmc_paramset.values
+ # # print 'theta', theta
+ # # print 'mcmc_paramset', mcmc_paramset
+ # return llh_utils.triangle_llh(
+ # theta=theta,
+ # args=args,
+ # asimov_paramset=asimov_paramset,
+ # mcmc_paramset=mcmc_paramset,
+ # fitter=fitter
+ # )
+ # prefix = 'mnrun/' + os.path.basename(out) + '_'
+ # if args.bayes_eval_bin is not None:
+ # prefix += '{0}_{1}_{2}'.format(idx, s_idx, a_idx)
+
+ # print 'begin running evidence calculation for {0}'.format(prefix)
+ # result = pymultinest.run(
+ # LogLikelihood=lnProb,
+ # Prior=CubePrior,
+ # n_dims=n_params,
+ # importance_nested_sampling=True,
+ # n_live_points=args.bayes_live_points,
+ # evidence_tolerance=args.bayes_tolerance,
+ # outputfiles_basename=prefix,
+ # resume=False,
+ # verbose=True
+ # )
+
+ # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params)
+ # a_lnZ = analyzer.get_stats()['global evidence']
+ # print 'Evidence = {0}'.format(a_lnZ)
+ # scales.append(sc)
+ # angles.append(an)
+ # evidences.append(a_lnZ)
+
+ # for i, d in enumerate(evidences):
+ # data[idx][i][i][0] = scales[i]
+ # data[idx][i][i][1] = angles[i]
+ # data[idx][i][i][2] = d
+
+ # misc_utils.make_dir(out)
+ # print 'saving to {0}.npy'.format(out)
+ # np.save(out+'.npy', np.array(data))
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
+