aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/make_dag.py
diff options
context:
space:
mode:
Diffstat (limited to 'submitter/make_dag.py')
-rw-r--r--submitter/make_dag.py53
1 files changed, 34 insertions, 19 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py
index 53878a2..78b7bff 100644
--- a/submitter/make_dag.py
+++ b/submitter/make_dag.py
@@ -19,10 +19,10 @@ fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
# (1, 1, 0, 1, 2, 0),
# (1, 2, 0, 1, 2, 0),
- # (1, 1, 1, 1, 0, 0),
+ (1, 1, 1, 1, 0, 0),
# (1, 1, 0, 1, 0, 0),
# (1, 0, 0, 1, 0, 0),
- # (1, 1, 1, 0, 1, 0),
+ (1, 1, 1, 0, 1, 0),
# (1, 1, 0, 0, 1, 0),
# (0, 1, 0, 0, 1, 0),
# (1, 2, 0, 0, 1, 0),
@@ -31,17 +31,16 @@ fix_sfr_mfr = [
# MCMC
run_mcmc = 'False'
-burnin = 500
-nsteps = 2000
+burnin = 2500
+nsteps = 10000
nwalkers = 60
seed = 24
-threads = 1
+threads = 4
mcmc_seed_type = 'uniform'
# FR
dimension = [6]
energy = [1e6]
-likelihood = 'golemfit'
no_bsm = 'False'
sigma_ratio = ['0.01']
scale = "1E-20 1E-30"
@@ -67,23 +66,30 @@ ast = 'p2_0'
data = 'real'
# Bayes Factor
-run_bayes_factor = 'False'
-run_angles_limit = 'True'
-bayes_bins = 10
-bayes_live_points = 200
-bayes_tolerance = 0.01
-bayes_eval_bin = True # set to 'all' to run normally
+run_bayes_factor = 'False'
+run_angles_limit = 'False'
+run_angles_correlation = 'True'
+bayes_bins = 20
+bayes_live_points = 1000
+bayes_tolerance = 0.01
+bayes_eval_bin = 'None' # set to 'all' to run normally
# Plot
-plot_angles = 'False'
-plot_elements = 'False'
-plot_bayes = 'False'
+plot_angles = 'False'
+plot_elements = 'False'
+plot_bayes = 'False'
+plot_angles_limit = 'False'
-outfile = 'dagman_FR_angles_limit.submit'
+# outfile = 'dagman_FR.submit'.format(dimension[0])
+outfile = 'dagman_FR_angles_correlation_DIM{0}.submit'.format(dimension[0])
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/submit.sub'
-if bayes_eval_bin != 'all': b_runs = bayes_bins
+if bayes_eval_bin != 'all':
+ if run_angles_correlation == 'True':
+ b_runs = bayes_bins**2
+ else:
+ b_runs = bayes_bins
else: b_runs = 1
with open(outfile, 'w') as f:
@@ -99,6 +105,7 @@ with open(outfile, 'w') as f:
outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}'.format(likelihood, dim, spectral_index)
bayes_output = 'None'
+ angles_lim_output = 'None'
for sig in sigma_ratio:
print 'sigma', sig
for frs in fix_sfr_mfr:
@@ -108,6 +115,8 @@ with open(outfile, 'w') as f:
bayes_output = outchains + '/bayes_factor/'
if run_angles_limit == 'True':
angles_lim_output = outchains + '/angles_limit/'
+ if run_angles_correlation == 'True':
+ angles_corr_output = outchains + '/angles_corr/'
outchains += 'mcmc_chain'
for r in range(b_runs):
print 'run', r
@@ -144,7 +153,6 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
@@ -161,6 +169,9 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r))
f.write('VARS\tjob{0}\trun_angles_limit="{1}"\n'.format(job_number, run_angles_limit))
f.write('VARS\tjob{0}\tangles_lim_output="{1}"\n'.format(job_number, angles_lim_output))
+ f.write('VARS\tjob{0}\tplot_angles_limit="{1}"\n'.format(job_number, plot_angles_limit))
+ f.write('VARS\tjob{0}\trun_angles_correlation="{1}"\n'.format(job_number, run_angles_correlation))
+ f.write('VARS\tjob{0}\tangles_corr_output="{1}"\n'.format(job_number, angles_corr_output))
job_number += 1
for frs in full_scan_mfr:
@@ -170,6 +181,8 @@ with open(outfile, 'w') as f:
bayes_output = outchains + '/bayes_factor/'
if run_angles_limit == 'True':
angles_lim_output = outchains + '/angles_limit/'
+ if run_angles_correlation == 'True':
+ angles_corr_output = outchains + '/angles_corr/'
outchains += 'mcmc_chain'
for r in range(b_runs):
print 'run', r
@@ -206,7 +219,6 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
@@ -223,4 +235,7 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r))
f.write('VARS\tjob{0}\trun_angles_limit="{1}"\n'.format(job_number, run_angles_limit))
f.write('VARS\tjob{0}\tangles_lim_output="{1}"\n'.format(job_number, angles_lim_output))
+ f.write('VARS\tjob{0}\tplot_angles_limit="{1}"\n'.format(job_number, plot_angles_limit))
+ f.write('VARS\tjob{0}\trun_angles_correlation="{1}"\n'.format(job_number, run_angles_correlation))
+ f.write('VARS\tjob{0}\tangles_corr_output="{1}"\n'.format(job_number, angles_corr_output))
job_number += 1