aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/mcmc_dag.py
diff options
context:
space:
mode:
Diffstat (limited to 'submitter/mcmc_dag.py')
-rw-r--r--submitter/mcmc_dag.py123
1 files changed, 0 insertions, 123 deletions
diff --git a/submitter/mcmc_dag.py b/submitter/mcmc_dag.py
deleted file mode 100644
index 1356965..0000000
--- a/submitter/mcmc_dag.py
+++ /dev/null
@@ -1,123 +0,0 @@
-#! /usr/bin/env python
-
-import os
-import numpy as np
-
-full_scan_mfr = [
- # (1, 1, 1), (1, 0, 0)
-]
-
-fix_sfr_mfr = [
- # (1, 1, 1, 1, 2, 0),
- # (1, 1, 1, 1, 0, 0),
- (1, 1, 1, 0, 1, 0),
- # (1, 1, 1, 0, 0, 1),
- # (1, 1, 0, 1, 2, 0),
- # (1, 1, 0, 1, 0, 0),
- # (1, 1, 0, 0, 1, 0),
- # (1, 0, 0, 1, 0, 0),
- # (0, 1, 0, 0, 1, 0),
- # (1, 2, 0, 1, 2, 0),
- # (1, 2, 0, 0, 1, 0),
-]
-
-GLOBAL_PARAMS = {}
-
-# MCMC
-GLOBAL_PARAMS.update(dict(
- run_mcmc = 'True',
- burnin = 250,
- nsteps = 1000,
- nwalkers = 60,
- seed = 25,
- mcmc_seed_type = 'uniform'
-))
-
-# FR
-dimension = [6]
-# dimension = [4, 5, 7, 8]
-# dimension = [3, 4, 5, 6, 7, 8]
-GLOBAL_PARAMS.update(dict(
- threads = 1,
- binning = '6e4 1e7 20',
- no_bsm = 'False',
- scale_region = "1E10",
- energy_dependance = 'spectral',
- spectral_index = -2,
- fix_mixing = 'T13',
- fix_mixing_almost = 'False',
- fold_index = 'True'
-))
-
-# Likelihood
-GLOBAL_PARAMS.update(dict(
- likelihood = 'golemfit',
- sigma_ratio = '0.01'
-))
-
-# GolemFit
-GLOBAL_PARAMS.update(dict(
- ast = 'p2_0',
- data = 'real'
-))
-
-# Plot
-GLOBAL_PARAMS.update(dict(
- plot_angles = 'True',
- plot_elements = 'False',
-))
-
-outfile = 'dagman_FR_MCMC_{0}_{1}.submit'.format(GLOBAL_PARAMS['likelihood'],
- GLOBAL_PARAMS['fix_mixing'])
-golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
-condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/mcmc_submit.sub'
-
-with open(outfile, 'w') as f:
- job_number = 1
- for dim in dimension:
- print 'dimension', dim
- outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/'.format(
- GLOBAL_PARAMS['likelihood'], dim
- )
- for frs in fix_sfr_mfr:
- print 'frs', frs
- outchains = outchain_head + '/fix_ifr/' + '{0}/'.format(GLOBAL_PARAMS['fix_mixing'])
- if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- outchains += '{0}/'.format(GLOBAL_PARAMS['data'].lower())
- outchains += 'mcmc_chain'
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, True))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
- for key in GLOBAL_PARAMS.iterkeys():
- f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- job_number += 1
-
- # for frs in full_scan_mfr:
- # print 'frs', frs
- # outchains = outchain_head + '/full/'
- # if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- # outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- # outchains += 'mcmc_chain'
- # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
- # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- # for key in GLOBAL_PARAMS.iterkeys():
- # f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- # job_number += 1
-
- print 'dag file = {0}'.format(outfile)