aboutsummaryrefslogtreecommitdiffstats
path: root/utils/gf.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/gf.py')
-rw-r--r--utils/gf.py12
1 files changed, 6 insertions, 6 deletions
diff --git a/utils/gf.py b/utils/gf.py
index 766c161..99b1f24 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -15,7 +15,7 @@ from functools import partial
import GolemFitPy as gf
from utils.enums import *
-from utils.misc import enum_keys, enum_parse
+from utils.misc import enum_parse
def data_distributions(fitter):
@@ -81,25 +81,25 @@ def gen_steering_params(steering_categ, quiet=False):
def gf_argparse(parser):
parser.add_argument(
'--data', default='real', type=partial(enum_parse, c=DataType),
- choices=enum_keys(DataType), help='select datatype'
+ choices=DataType, help='select datatype'
)
parser.add_argument(
'--ast', default='baseline', type=partial(enum_parse, c=SteeringCateg),
- choices=enum_keys(SteeringCateg),
+ choices=SteeringCateg,
help='use asimov/fake dataset with specific steering'
)
parser.add_argument(
'--aft', default='hesespl', type=partial(enum_parse, c=FitCateg),
- choices=enum_keys(FitCateg),
+ choices=FitCateg,
help='use asimov/fake dataset with specific Fit'
)
parser.add_argument(
'--axs', default='nom', type=partial(enum_parse, c=XSCateg),
- choices=enum_keys(XSCateg),
+ choices=XSCateg,
help='use asimov/fake dataset with xs scaling'
)
parser.add_argument(
'--priors', default='uniform', type=partial(enum_parse, c=Priors),
- choices=enum_keys(Priors), help='Bayesian priors'
+ choices=Priors, help='Bayesian priors'
)