1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : March 17, 2018
"""
Useful GolemFit wrappers for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
import argparse
from functools import partial
import GolemFitPy as gf
from utils.enums import *
from utils.misc import enum_keys, enum_parse
def data_distributions(fitter):
hdat = fitter.GetDataDistribution()
binedges = np.asarray([fitter.GetZenithBinsData(), fitter.GetEnergyBinsData()])
return hdat, binedges
def fit_flags(fitflag_categ):
flags = gf.FitParametersFlag()
if fitflag_categ is FitFlagCateg.xs:
# False means it's not fixed in minimization
flags.NeutrinoAntineutrinoRatio = False
return flags
def fit_params(fit_categ):
params = gf.FitParameters()
params.astroNorm = 7.5
params.astroDeltaGamma = 0.9
if fit_categ is FitCateg.hesespl:
params.astroNormSec = 0
elif fit_categ is FitCateg.hesedpl:
params.astroNormSec=7.0
elif fit_categ is FitCateg.zpspl:
# zero prompt, single powerlaw
params.promptNorm = 0
params.astroNormSec = 0
elif fit_categ is FitCateg.zpdpl:
# zero prompt, double powerlaw
params.promptNorm = 0
params.astroNormSec=7.0
elif fit_categ is FitCateg.nunubar2:
params.NeutrinoAntineutrinoRatio = 2
def fit_priors(fitpriors_categ):
priors = gf.Priors()
if fitpriors_categ == FitPriorsCateg.xs:
priors.promptNormCenter = 1
priors.promptNormWidth = 3
priors.astroDeltaGammaCenter = 0
priors.astroDeltaGammaWidth = 1
return priors
def gen_steering_params(steering_categ, quiet=False):
params = gf.SteeringParams()
if quiet: params.quiet = True
params.fastmode = False
params.do_HESE_reshuffle = False
params.numc_tag = steering_categ.name
params.baseline_astro_spectral_index = -2.
if steering_categ is SteeringCateg.LONGLIFE:
params.years = [999]
params.numc_tag = 'std_half1'
if steering_categ is SteeringCateg.DPL:
params.diffuse_fit_type = gf.DiffuseFitType.DoublePowerLaw
params.numc_tag = 'std_half1'
return params
def gf_argparse(parser):
parser.add_argument(
'--data', default='real', type=partial(enum_parse, c=DataType),
choices=enum_keys(DataType), help='select datatype'
)
parser.add_argument(
'--ast', default='baseline', type=partial(enum_parse, c=SteeringCateg),
choices=enum_keys(SteeringCateg),
help='use asimov/fake dataset with specific steering'
)
parser.add_argument(
'--aft', default='hesespl', type=partial(enum_parse, c=FitCateg),
choices=enum_keys(FitCateg),
help='use asimov/fake dataset with specific Fit'
)
parser.add_argument(
'--axs', default='nom', type=partial(enum_parse, c=XSCateg),
choices=enum_keys(XSCateg),
help='use asimov/fake dataset with xs scaling'
)
parser.add_argument(
'--priors', default='uniform', type=partial(enum_parse, c=Priors),
choices=enum_keys(Priors), help='Bayesian priors'
)
|