aboutsummaryrefslogtreecommitdiffstats
path: root/utils/multinest.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/multinest.py')
-rw-r--r--utils/multinest.py109
1 files changed, 0 insertions, 109 deletions
diff --git a/utils/multinest.py b/utils/multinest.py
deleted file mode 100644
index fdd87cd..0000000
--- a/utils/multinest.py
+++ /dev/null
@@ -1,109 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 19, 2018
-
-"""
-Useful functions to use MultiNest for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from functools import partial
-
-import numpy as np
-
-from pymultinest import analyse, run
-
-from utils import likelihood
-from utils.misc import gen_identifier, make_dir, solve_ratio
-
-
-def CubePrior(cube, ndim, n_params):
- pass
-
-
-def lnProb(cube, ndim, n_params, mn_paramset, llh_paramset, asimov_paramset,
- args, fitter):
- if ndim != len(mn_paramset):
- raise AssertionError(
- 'Length of MultiNest scan paramset is not the same as the input '
- 'params\ncube={0}\nmn_paramset]{1}'.format(cube, mn_paramset)
- )
- pranges = mn_paramset.seeds
- for i in xrange(ndim):
- mn_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0]
- for pm in mn_paramset.names:
- llh_paramset[pm].value = mn_paramset[pm].value
- theta = llh_paramset.values
- # print 'llh_paramset', llh_paramset
- llh = likelihood.ln_prob(
- theta=theta,
- args=args,
- asimov_paramset=asimov_paramset,
- llh_paramset=llh_paramset,
- fitter=fitter
- )
- # print 'llh', llh
- return llh
-
-
-def mn_argparse(parser):
- parser.add_argument(
- '--mn-live-points', type=int, default=3000,
- help='Number of live points for MultiNest evaluations'
- )
- parser.add_argument(
- '--mn-tolerance', type=float, default=0.01,
- help='Tolerance for MultiNest'
- )
- parser.add_argument(
- '--mn-output', type=str, default='./mnrun/',
- help='Folder to store MultiNest evaluations'
- )
-
-
-def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, fitter,
- identifier='mn'):
- """Run the MultiNest algorithm to calculate the evidence."""
- n_params = len(mn_paramset)
-
- for n in mn_paramset.names:
- llh_paramset[n].value = mn_paramset[n].value
-
- lnProbEval = partial(
- lnProb,
- mn_paramset = mn_paramset,
- llh_paramset = llh_paramset,
- asimov_paramset = asimov_paramset,
- args = args,
- fitter = fitter
- )
-
- # prefix = './mnrun/DIM{0}/{1}_{2}_{3:>010}_'.format(
- # args.dimension, args.likelihood, gen_identifier(args), np.random.randint(0, 2**30)
- # )
- llh = '{0}'.format(args.likelihood).split('.')[1]
- data = '{0}'.format(args.data).split('.')[1]
- sr1, sr2, sr3 = solve_ratio(args.source_ratio)
- prefix = './mnrun/DIM{0}/{1}/{2}/s{3}{4}{5}/{6}'.format(
- args.dimension, data, llh, sr1, sr2, sr3, identifier
- )
- make_dir(prefix)
- print 'Running evidence calculation for {0}'.format(prefix)
- run(
- LogLikelihood = lnProbEval,
- Prior = CubePrior,
- n_dims = n_params,
- n_live_points = args.mn_live_points,
- evidence_tolerance = args.mn_tolerance,
- outputfiles_basename = prefix,
- importance_nested_sampling = True,
- resume = False,
- verbose = True
- )
-
- analyser = analyse.Analyzer(
- outputfiles_basename=prefix, n_params=n_params
- )
- return analyser.get_stats()['global evidence']