aboutsummaryrefslogtreecommitdiffstats
path: root/utils
diff options
context:
space:
mode:
Diffstat (limited to 'utils')
-rw-r--r--utils/__init__.py0
-rw-r--r--utils/enums.py68
-rw-r--r--utils/fr.py353
-rw-r--r--utils/gf.py105
-rw-r--r--utils/mcmc.py167
-rw-r--r--utils/misc.py230
6 files changed, 923 insertions, 0 deletions
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/utils/__init__.py
diff --git a/utils/enums.py b/utils/enums.py
new file mode 100644
index 0000000..31885de
--- /dev/null
+++ b/utils/enums.py
@@ -0,0 +1,68 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Define Enums for the BSM flavour ratio analysis
+"""
+
+from enum import Enum
+
+
+class DataType(Enum):
+ REAL = 1
+ FAKE = 2
+ ASMIMOV = 3
+
+
+class FitCateg(Enum):
+ HESESPL = 1
+ HESEDPL = 2
+ ZPSPL = 3
+ ZPDPL = 4
+ NUNUBAR2 = 5
+
+
+class FitFlagCateg(Enum):
+ DEFAULT = 1
+ XS = 2
+
+
+class FitPriorsCateg(Enum):
+ DEFAULT = 1
+ XS = 2
+
+
+class Likelihood(Enum):
+ FLAT = 1
+ GAUSSIAN = 2
+ GOLEMFIT = 3
+
+
+class Priors(Enum):
+ UNIFORM = 1
+ LOGUNIFORM = 2
+ JEFFREYS = 3
+
+
+class SteeringCateg(Enum):
+ BASELINE = 1
+ HOLEICE = 2
+ ABSORPTION = 3
+ SCATTERING = 4
+ SCATTERING_ABSORPTION = 5
+ STD = 6
+ STD_HALF1 = 7
+ STD_HALF2 = 8
+ LONGLIFE = 9
+ DPL = 10
+
+
+class XSCateg(Enum):
+ HALF = 1
+ NOM = 2
+ TWICE = 3
+ TWICE01 = 4
+ TWICE02 = 5
+
diff --git a/utils/fr.py b/utils/fr.py
new file mode 100644
index 0000000..ddcb5d2
--- /dev/null
+++ b/utils/fr.py
@@ -0,0 +1,353 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Useful functions for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division
+
+import sys
+
+import numpy as np
+from scipy import linalg
+
+
+MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
+"""SM mass eigenvalues"""
+
+
+def angles_to_fr(src_angles):
+ """Convert angular projection of the source flavour ratio back into the
+ flavour ratio.
+
+ Parameters
+ ----------
+ src_angles : list, length = 2
+ sin(phi)^4 and cos(psi)^2
+
+ Returns
+ ----------
+ flavour ratios (nue, numu, nutau)
+
+ Examples
+ ----------
+ >>> print angles_to_fr((0.3, 0.4))
+ (0.38340579025361626, 0.16431676725154978, 0.45227744249483393)
+
+ """
+ sphi4, c2psi = src_angles
+
+ psi = (0.5)*np.arccos(c2psi)
+
+ sphi2 = np.sqrt(sphi4)
+ cphi2 = 1. - sphi2
+ spsi2 = np.sin(psi)**2
+ cspi2 = 1. - spsi2
+
+ x = sphi2*cspi2
+ y = sphi2*spsi2
+ z = cphi2
+ return x, y, z
+
+
+def angles_to_u(bsm_angles):
+ """Convert angular projection of the mixing matrix elements back into the
+ mixing matrix elements.
+
+ Parameters
+ ----------
+ bsm_angles : list, length = 4
+ sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> from fr import angles_to_u
+ >>> print angles_to_u((0.2, 0.3, 0.5, 1.5))
+ array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
+ [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
+ [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]])
+
+ """
+ s12_2, c13_4, s23_2, dcp = bsm_angles
+ dcp = np.complex128(dcp)
+
+ c12_2 = 1. - s12_2
+ c13_2 = np.sqrt(c13_4)
+ s13_2 = 1. - c13_2
+ c23_2 = 1. - s23_2
+
+ t12 = np.arcsin(np.sqrt(s12_2))
+ t13 = np.arccos(np.sqrt(c13_2))
+ t23 = np.arcsin(np.sqrt(s23_2))
+
+ c12 = np.cos(t12)
+ s12 = np.sin(t12)
+ c13 = np.cos(t13)
+ s13 = np.sin(t13)
+ c23 = np.cos(t23)
+ s23 = np.sin(t23)
+
+ p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=np.complex128)
+ p2 = np.array([[c13 , 0 , s13*np.exp(-1j*dcp)] , [0 , 1 , 0] , [-s13*np.exp(1j*dcp) , 0 , c13]] , dtype=np.complex128)
+ p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=np.complex128)
+
+ u = np.dot(np.dot(p1, p2), p3)
+ return u
+
+
+def cardano_eqn(ham):
+ """Diagonalise the effective Hamiltonian 3x3 matrix into the form
+ h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015).
+
+ Parameters
+ ----------
+ ham : numpy ndarray of shape (3, 3)
+ sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> import numpy as np
+ >>> from fr import cardano_eqn
+ >>> ham = np.array(
+ >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
+ >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
+ >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]
+ >>> )
+ >>> print cardano_eqn(ham)
+ array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j],
+ [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j],
+ [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]])
+
+ """
+ if np.shape(ham) != (3, 3):
+ raise ValueError(
+ 'Input matrix should be a square and dimension 3, '
+ 'got\n{0}'.format(ham)
+ )
+
+ a = -np.trace(ham)
+ b = (0.5) * ((np.trace(ham))**2 - np.trace(np.dot(ham, ham)))
+ c = -linalg.det(ham)
+
+ Q = (1/9.) * (a**2 - 3*b)
+ R = (1/54.) * (2*a**3 - 9*a*b + 27*c)
+ theta = np.arccos(R / np.sqrt(Q**3))
+
+ E1 = -2 * np.sqrt(Q) * np.cos(theta/3.) - (1/3.)*a
+ E2 = -2 * np.sqrt(Q) * np.cos((theta - 2.*np.pi)/3.) - (1/3.)*a
+ E3 = -2 * np.sqrt(Q) * np.cos((theta + 2.*np.pi)/3.) - (1/3.)*a
+
+ A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2]
+ A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2]
+ A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2]
+
+ B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0]
+ B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0]
+ B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0]
+
+ C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0]
+ C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0]
+ C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0]
+
+ N1 = np.sqrt(abs(A1*B1)**2 + abs(A1*C1)**2 + abs(B1*C1)**2)
+ N2 = np.sqrt(abs(A2*B2)**2 + abs(A2*C2)**2 + abs(B2*C2)**2)
+ N3 = np.sqrt(abs(A3*B3)**2 + abs(A3*C3)**2 + abs(B3*C3)**2)
+
+ mm = np.array([
+ [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3],
+ [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3],
+ [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3]
+ ])
+ return mm
+
+
+def normalise_fr(fr):
+ """Normalise an input flavour combination to a flavour ratio.
+
+ Parameters
+ ----------
+ fr : list, length = 3
+ flavour combination
+
+ Returns
+ ----------
+ numpy ndarray flavour ratio
+
+ Examples
+ ----------
+ >>> from fr import normalise_fr
+ >>> print normalise_fr((1, 2, 3))
+ array([ 0.16666667, 0.33333333, 0.5 ])
+
+ """
+ return np.array(fr) / float(np.sum(fr))
+
+
+NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
+"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)"""
+
+
+def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
+ nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False,
+ fix_scale=False, scale=None, check_uni=True):
+ """Construct the BSM mixing matrix from the BSM parameters.
+
+ Parameters
+ ----------
+ theta : list, length > 3
+ BSM parameters
+
+ dim : int
+ Dimension of BSM physics
+
+ energy : float
+ Energy in GeV
+
+ mass_eigenvalues : list, length = 2
+ SM mass eigenvalues
+
+ nufit_u : numpy ndarray, dimension 3
+ SM NuFIT mixing matrix
+
+ no_bsm : bool
+ Turn off BSM behaviour
+
+ fix_mixing : bool
+ Fix the BSM mixing angles
+
+ fix_scale : bool
+ Fix the BSM scale
+
+ scale : float
+ Used with fix_scale - scale at which to fix
+
+ check_uni : bool
+ Check the resulting BSM mixing matrix is unitary
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> from fr import params_to_BSMu
+ >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)
+ array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j],
+ [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j],
+ [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])
+
+ """
+ if np.shape(nufit_u) != (3, 3):
+ raise ValueError(
+ 'Input matrix should be a square and dimension 3, '
+ 'got\n{0}'.format(ham)
+ )
+
+ if fix_mixing:
+ s12_2, c13_4, s23_2, dcp, sc2 = 0.5, 1.0-1E-6, 0.5, 0., theta
+ elif fix_scale:
+ s12_2, c13_4, s23_2, dcp = theta
+ sc2 = np.log10(scale)
+ else:
+ s12_2, c13_4, s23_2, dcp, sc2 = theta
+ sc2 = np.power(10., sc2)
+ sc1 = sc2 / 100.
+
+ mass_matrix = np.array(
+ [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
+ )
+ sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T))
+ if no_bsm:
+ eg_vector = cardano_eqn(sm_ham)
+ else:
+ new_physics_u = angles_to_u((s12_2, c13_4, s23_2, dcp))
+ scale_matrix = np.array(
+ [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]]
+ )
+ bsm_term = (energy**(dim-3)) * np.dot(new_physics_u, np.dot(scale_matrix, new_physics_u.conj().T))
+
+ bsm_ham = sm_ham + bsm_term
+ eg_vector = cardano_eqn(bsm_ham)
+
+ if check_uni:
+ tu = test_unitarity(eg_vector)
+ if not abs(np.trace(tu) - 3.) < 1e-5 or \
+ not abs(np.sum(tu) - 3.) < 1e-5:
+ raise AssertionError(
+ 'Matrix is not unitary!\neg_vector\n{0}\ntest '
+ 'u\n{1}'.format(eg_vector, tu)
+ )
+ return eg_vector
+
+
+def test_unitarity(x, prnt=False):
+ """Test the unitarity of a matrix.
+
+ Parameters
+ ----------
+ x : numpy ndarray
+ Matrix to evaluate
+
+ prnt : bool
+ Print the result
+
+ Returns
+ ----------
+ numpy ndarray
+
+ Examples
+ ----------
+ >>> from fr import test_unitarity
+ >>> x = np.identity(3)
+ >>> print test_unitarity(x)
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+
+ """
+ f = abs(np.dot(x, x.conj().T))
+ if prnt:
+ print 'Unitarity test:\n{0}'.format(f)
+ return f
+
+
+def u_to_fr(source_fr, matrix):
+ """Compute the observed flavour ratio assuming decoherence.
+
+ Parameters
+ ----------
+ source_fr : list, length = 3
+ Source flavour ratio components
+
+ matrix : numpy ndarray, dimension 3
+ Mixing matrix
+
+ Returns
+ ----------
+ Measured flavour ratio
+
+ Examples
+ ----------
+ >>> from fr import params_to_BSMu, u_to_fr
+ >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))
+ array([ 0.33740075, 0.33176584, 0.33083341])
+
+ """
+ # TODO(shivesh): energy dependence
+ composition = np.einsum(
+ 'ai, bi, a -> b', abs(matrix)**2, abs(matrix)**2, source_fr
+ )
+ ratio = composition / np.sum(source_fr)
+ return ratio
+
diff --git a/utils/gf.py b/utils/gf.py
new file mode 100644
index 0000000..766c161
--- /dev/null
+++ b/utils/gf.py
@@ -0,0 +1,105 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Useful GolemFit wrappers for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from functools import partial
+
+import GolemFitPy as gf
+
+from utils.enums import *
+from utils.misc import enum_keys, enum_parse
+
+
+def data_distributions(fitter):
+ hdat = fitter.GetDataDistribution()
+ binedges = np.asarray([fitter.GetZenithBinsData(), fitter.GetEnergyBinsData()])
+ return hdat, binedges
+
+
+def fit_flags(fitflag_categ):
+ flags = gf.FitParametersFlag()
+ if fitflag_categ is FitFlagCateg.xs:
+ # False means it's not fixed in minimization
+ flags.NeutrinoAntineutrinoRatio = False
+ return flags
+
+
+def fit_params(fit_categ):
+ params = gf.FitParameters()
+ params.astroNorm = 7.5
+ params.astroDeltaGamma = 0.9
+ if fit_categ is FitCateg.hesespl:
+ params.astroNormSec = 0
+ elif fit_categ is FitCateg.hesedpl:
+ params.astroNormSec=7.0
+ elif fit_categ is FitCateg.zpspl:
+ # zero prompt, single powerlaw
+ params.promptNorm = 0
+ params.astroNormSec = 0
+ elif fit_categ is FitCateg.zpdpl:
+ # zero prompt, double powerlaw
+ params.promptNorm = 0
+ params.astroNormSec=7.0
+ elif fit_categ is FitCateg.nunubar2:
+ params.NeutrinoAntineutrinoRatio = 2
+
+
+def fit_priors(fitpriors_categ):
+ priors = gf.Priors()
+ if fitpriors_categ == FitPriorsCateg.xs:
+ priors.promptNormCenter = 1
+ priors.promptNormWidth = 3
+ priors.astroDeltaGammaCenter = 0
+ priors.astroDeltaGammaWidth = 1
+ return priors
+
+
+def gen_steering_params(steering_categ, quiet=False):
+ params = gf.SteeringParams()
+ if quiet: params.quiet = True
+ params.fastmode = False
+ params.do_HESE_reshuffle = False
+ params.numc_tag = steering_categ.name
+ params.baseline_astro_spectral_index = -2.
+ if steering_categ is SteeringCateg.LONGLIFE:
+ params.years = [999]
+ params.numc_tag = 'std_half1'
+ if steering_categ is SteeringCateg.DPL:
+ params.diffuse_fit_type = gf.DiffuseFitType.DoublePowerLaw
+ params.numc_tag = 'std_half1'
+ return params
+
+
+def gf_argparse(parser):
+ parser.add_argument(
+ '--data', default='real', type=partial(enum_parse, c=DataType),
+ choices=enum_keys(DataType), help='select datatype'
+ )
+ parser.add_argument(
+ '--ast', default='baseline', type=partial(enum_parse, c=SteeringCateg),
+ choices=enum_keys(SteeringCateg),
+ help='use asimov/fake dataset with specific steering'
+ )
+ parser.add_argument(
+ '--aft', default='hesespl', type=partial(enum_parse, c=FitCateg),
+ choices=enum_keys(FitCateg),
+ help='use asimov/fake dataset with specific Fit'
+ )
+ parser.add_argument(
+ '--axs', default='nom', type=partial(enum_parse, c=XSCateg),
+ choices=enum_keys(XSCateg),
+ help='use asimov/fake dataset with xs scaling'
+ )
+ parser.add_argument(
+ '--priors', default='uniform', type=partial(enum_parse, c=Priors),
+ choices=enum_keys(Priors), help='Bayesian priors'
+ )
+
diff --git a/utils/mcmc.py b/utils/mcmc.py
new file mode 100644
index 0000000..d91764f
--- /dev/null
+++ b/utils/mcmc.py
@@ -0,0 +1,167 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Useful functions to use an MCMC for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import errno
+
+import argparse
+from functools import partial
+
+import emcee
+import tqdm
+
+import numpy as np
+from scipy.stats import multivariate_normal
+
+from utils import fr as fr_utils
+from utils.enums import Likelihood
+from utils.misc import enum_keys, enum_parse, parse_bool
+
+
+def lnprior(theta, paramset):
+ """Priors on theta."""
+ ranges = paramset.ranges
+ for value, range in zip(theta, ranges):
+ if range[0] <= value <= range[1]:
+ pass
+ else: return -np.inf
+ return 0.
+
+
+def mcmc(p0, triangle_llh, lnprior, ndim, nwalkers, burnin, nsteps, ntemps=1, threads=1):
+ """Run the MCMC."""
+ sampler = emcee.PTSampler(
+ ntemps, nwalkers, ndim, triangle_llh, lnprior, threads=threads
+ )
+
+ print "Running burn-in"
+ for result in tqdm.tqdm(sampler.sample(p0, iterations=burnin), total=burnin):
+ pos, prob, state = result
+ sampler.reset()
+ print "Finished burn-in"
+
+ print "Running"
+ for _ in tqdm.tqdm(sampler.sample(pos, iterations=nsteps), total=nsteps):
+ pass
+ print "Finished"
+
+ samples = sampler.chain[0, :, :, :].reshape((-1, ndim))
+ print 'acceptance fraction', sampler.acceptance_fraction
+ print 'sum of acceptance fraction', np.sum(sampler.acceptance_fraction)
+ print 'np.unique(samples[:,0]).shape', np.unique(samples[:,0]).shape
+ try:
+ print 'autocorrelation', sampler.acor
+ except:
+ print 'WARNING : NEED TO RUN MORE SAMPLES'
+
+ return samples
+
+
+def mcmc_argparse(parser):
+ parser.add_argument(
+ '--likelihood', default='gaussian', type=partial(enum_parse, c=Likelihood),
+ choices=enum_keys(Likelihood), help='likelihood contour'
+ )
+ parser.add_argument(
+ '--run-mcmc', type=parse_bool, default='True',
+ help='Run the MCMC'
+ )
+ parser.add_argument(
+ '--burnin', type=int, default=100,
+ help='Amount to burnin'
+ )
+ parser.add_argument(
+ '--nwalkers', type=int, default=100,
+ help='Number of walkers'
+ )
+ parser.add_argument(
+ '--nsteps', type=int, default=2000,
+ help='Number of steps to run'
+ )
+
+
+def gaussian_llh(fr, fr_bf, sigma):
+ """Multivariate gaussian likelihood."""
+ cov_fr = np.identity(3) * sigma
+ return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr))
+
+
+def gaussian_seed(paramset, ntemps, nwalkers):
+ """Get gaussian seed values for the MCMC."""
+ ndim = len(paramset)
+ p0 = np.random.normal(
+ paramset.values, paramset.stds, size=[ntemps, nwalkers, ndim]
+ )
+ return p0
+
+
+def save_chains(chains, outfile):
+ """Save the chains.
+
+ Parameters
+ ----------
+ chains : numpy ndarray
+ MCMC chains to save
+
+ outfile : str
+ Output file location of chains
+
+ """
+ try:
+ os.makedirs(outfile[:-len(os.path.basename(outfile))])
+ except OSError as exc: # Python >2.5
+ if exc.errno == errno.EEXIST and os.path.isdir(outfile[:-len(os.path.basename(outfile))]):
+ pass
+ else:
+ raise
+ print 'Saving chains to location {0}'.format(outfile+'.npy')
+ np.save(outfile+'.npy', chains)
+
+
+def triangle_llh(theta, args):
+ """-Log likelihood function for a given theta."""
+ if args.fix_source_ratio:
+ fr1, fr2, fr3 = args.source_ratio
+ bsm_angles = theta[-5:]
+ else:
+ fr1, fr2, fr3 = fr_utils.angles_to_fr(theta[-2:])
+ bsm_angles = theta[-7:-2]
+
+ u = fr_utils.params_to_BSMu(
+ theta = bsm_angles,
+ dim = args.dimension,
+ energy = args.energy,
+ no_bsm = args.no_bsm,
+ fix_mixing = args.fix_mixing,
+ fix_scale = args.fix_scale,
+ scale = args.scale
+ )
+
+ fr = fr_utils.u_to_fr((fr1, fr2, fr3), u)
+ fr_bf = args.measured_ratio
+ if args.likelihood is Likelihood.FLAT:
+ return 1.
+ elif args.likelihood is Likelihood.GAUSSIAN:
+ return gaussian_llh(fr, fr_bf, args.sigma_ratio)
+ elif args.likelihood is Likelihood.GOLEMFIT:
+ raise NotImplementedError('TODO')
+ import GolemFitPy as gf
+ from collections import namedtuple
+ datapaths = gf.DataPaths()
+ IceModels = namedtuple('IceModels', 'std_half2')
+ fitters = IceModels(*[
+ gf.GolemFit(datapaths,
+ gf.gen_steering_params(SteeringCateg.__members__[ice]),
+ xs_params(XSCateg.nom)) for ice in IceModels._fields])
+ for fitter in fitters:
+ fitter.SetFitParametersFlag(fit_flags(FitFlagCateg.xs))
+ fitter.SetFitPriors(fit_priors(FitPriorsCateg.xs))
+
diff --git a/utils/misc.py b/utils/misc.py
new file mode 100644
index 0000000..5c3eb2e
--- /dev/null
+++ b/utils/misc.py
@@ -0,0 +1,230 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Misc functions for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import errno
+from collections import Sequence
+import multiprocessing
+
+import numpy as np
+
+from utils.enums import Likelihood
+
+
+class Param(object):
+ """Parameter class to store parameters.
+ """
+ def __init__(self, name, value, ranges, std=None, tex=None):
+ self._ranges = None
+ self._tex = None
+
+ self.name = name
+ self.value = value
+ self.ranges = ranges
+ self.std = std
+ self.tex = tex
+
+ @property
+ def ranges(self):
+ return tuple(self._ranges)
+
+ @ranges.setter
+ def ranges(self, values):
+ self._ranges = [val for val in values]
+
+ @property
+ def tex(self):
+ return r'{0}'.format(self.tex)
+
+ @tex.setter
+ def tex(self, t):
+ self._tex = t if t is not None else r'{\rm %s}' % self.name
+
+
+class ParamSet(Sequence):
+ """Container class for a set of parameters.
+ """
+ def __init__(self, *args):
+ param_sequence = []
+ for arg in args:
+ try:
+ param_sequence.extend(arg)
+ except TypeError:
+ param_sequence.append(arg)
+
+ # Disallow duplicated params
+ all_names = [p.name for p in param_sequence]
+ unique_names = set(all_names)
+ if len(unique_names) != len(all_names):
+ duplicates = set([x for x in all_names if all_names.count(x) > 1])
+ raise ValueError('Duplicate definitions found for param(s): ' +
+ ', '.join(str(e) for e in duplicates))
+
+ # Elements of list must be Param type
+ assert all([isinstance(x, Param) for x in param_sequence]), \
+ 'All params must be of type "Param"'
+
+ self._params = param_sequence
+
+ def __len__(self):
+ return len(self._params)
+
+ def __getitem__(self, i):
+ if isinstance(i, int):
+ return self._params[i]
+ elif isinstance(i, basestring):
+ return self._by_name[i]
+
+ def __getattr__(self, attr):
+ try:
+ return super(ParamSet, self).__getattribute__(attr)
+ except AttributeError:
+ t, v, tb = sys.exc_info()
+ try:
+ return self[attr]
+ except KeyError:
+ raise t, v, tb
+
+ def __iter__(self):
+ return iter(self._params)
+
+ @property
+ def _by_name(self):
+ return {obj.name: obj for obj in self._params}
+
+ @property
+ def names(self):
+ return tuple([obj.name for obj in self._params])
+
+ @property
+ def values(self):
+ return tuple([obj.value for obj in self._params])
+
+ @property
+ def ranges(self):
+ return tuple([obj.ranges for obj in self._params])
+
+ @property
+ def stds(self):
+ return tuple([obj.std for obj in self._params])
+
+ @property
+ def params(self):
+ return self._params
+
+ def to_dict(self):
+ return {obj.name: obj.value for obj in self._params}
+
+
+def gen_outfile_name(args):
+ """Generate a name for the output file based on the input args.
+
+ Parameters
+ ----------
+ args : argparse
+ argparse object to print
+
+ """
+ mr = args.measured_ratio
+ si = args.sigma_ratio
+ if args.fix_source_ratio:
+ sr = args.source_ratio
+ if args.fix_mixing:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_fix_mixing'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000),
+ int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), args.dimension
+ )
+ elif args.fix_scale:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_fixed_scale_{8}'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000),
+ int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), args.dimension,
+ args.scale
+ )
+ else:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_single_scale'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000),
+ int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), args.dimension
+ )
+ else:
+ if args.fix_mixing:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_DIM{4}_fix_mixing'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100),
+ int(si*1000), args.dimension
+ )
+ elif args.fix_scale:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_DIM{4}_fixed_scale_{5}'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100),
+ int(si*1000), args.dimension, args.scale
+ )
+ else:
+ outfile = args.outfile+'_{0:03d}_{1:03d}_{2:03d}_{3:04d}_DIM{4}'.format(
+ int(mr[0]*100), int(mr[1]*100), int(mr[2]*100),
+ int(si*1000), args.dimension
+ )
+ if args.likelihood is Likelihood.FLAT: outfile += '_flat'
+ return outfile
+
+
+def parse_bool(s):
+ """Parse a string to a boolean.
+
+ Parameters
+ ----------
+ s : str
+ String to parse
+
+ Returns
+ ----------
+ bool
+
+ Examples
+ ----------
+ >>> from misc import parse_bool
+ >>> print parse_bool('true')
+ True
+
+ """
+ if s.lower() == 'true':
+ return True
+ elif s.lower() == 'false':
+ return False
+ else:
+ raise ValueError
+
+
+def print_args(args):
+ """Print the input arguments.
+
+ Parameters
+ ----------
+ args : argparse
+ argparse object to print
+
+ """
+ arg_vars = vars(args)
+ for key in arg_vars.iterkeys():
+ print '== {0:<25} = {1}'.format(key, arg_vars[key])
+
+
+def enum_keys(e):
+ return e.__members__.keys()
+
+
+def enum_parse(s, c):
+ return c[s.upper()]
+
+
+def thread_type(t):
+ if t.lower() == 'max':
+ return multiprocessing.cpu_count()
+ else:
+ return int(t)
+