aboutsummaryrefslogtreecommitdiffstats
path: root/utils
diff options
context:
space:
mode:
Diffstat (limited to 'utils')
-rw-r--r--utils/gf.py6
-rw-r--r--utils/plot.py23
2 files changed, 19 insertions, 10 deletions
diff --git a/utils/gf.py b/utils/gf.py
index 2c794d3..13d5728 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -87,8 +87,10 @@ def steering_params(args):
params.sampleToLoad = gf.sampleTag.MagicTau
params.use_legacy_selfveto_calculation = False
- params.spline_hole_ice = False
- params.spline_dom_efficiency = False
+ # params.spline_hole_ice = False
+ # params.spline_dom_efficiency = False
+ params.spline_hole_ice = True
+ params.spline_dom_efficiency = True
return params
diff --git a/utils/plot.py b/utils/plot.py
index 91b8b4e..f81f9da 100644
--- a/utils/plot.py
+++ b/utils/plot.py
@@ -41,6 +41,12 @@ from utils.enums import Likelihood, MixingScenario, ParamTag, StatCateg
from utils.fr import angles_to_u, angles_to_fr
+bayes_K = 1. # Substantial degree of belief.
+# bayes_K = 3/2. # Strong degree of belief.
+# bayes_K = 2. # Very strong degree of belief
+# bayes_K = 5/2. # Decisive degree of belief
+
+
if os.path.isfile('./plot_llh/paper.mplstyle'):
plt.style.use('./plot_llh/paper.mplstyle')
elif os.environ.get('GOLEMSOURCEPATH') is not None:
@@ -218,6 +224,7 @@ def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None):
ha='center', va='center')
for of in outformat:
+ print 'Saving', outfile+'_angles.'+of
g.export(outfile+'_angles.'+of)
if not hasattr(args, 'plot_elements'):
@@ -327,7 +334,7 @@ def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
ax.plot(scales_rm, reduced_ev)
- ax.axhline(y=np.log(10**(3/2.)), color='red', alpha=1., linewidth=1.3)
+ ax.axhline(y=np.log(10**(bayes_K)), color='red', alpha=1., linewidth=1.3)
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.3, linewidth=1)
@@ -384,7 +391,7 @@ def plot_sens_full(data, outfile, outformat, args):
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
- al = scales[reduced_ev > np.log(10**(3/2.))] # Strong degree of belief
+ al = scales[reduced_ev > np.log(10**(bayes_K))] # Strong degree of belief
# al = scales[reduced_ev > 0.4] # Testing
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
@@ -468,7 +475,7 @@ def plot_sens_fixed_angle_pretty(data, outfile, outformat, args):
8: (-21-(en[0]*6), -21-(en[1]+en[1]*6))
}
- angles = 2
+ angles = 3
colour = {0:'red', 1:'blue', 2:'green'}
rgb_co = {0:[1,0,0], 1:[0,0,1], 2:[0.0, 0.5019607843137255, 0.0]}
@@ -588,14 +595,14 @@ def plot_sens_fixed_angle_pretty(data, outfile, outformat, args):
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic_rm - null)
- al = scales_rm[reduced_ev > np.log(10**(3/2.))] # Strong degree of belief
+ al = scales_rm[reduced_ev > np.log(10**(bayes_K))] # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic_rm - null)
al = scales_rm[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1}!'.format(dim, src)
continue
- if reduced_ev[-1] < np.log(10**(3/2.)) - 0.1:
+ if reduced_ev[-1] < np.log(10**(bayes_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} FRS{1}!'.format(dim, src)
continue
@@ -729,14 +736,14 @@ def plot_sens_fixed_angle(data, outfile, outformat, args):
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
- al = scales[reduced_ev > np.log(10**(3/2.))] # Strong degree of belief
+ al = scales[reduced_ev > np.log(10**(bayes_K))] # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1}!'.format(dim, src)
continue
- if reduced_ev[-1] < np.log(10**(3/2.)) - 0.1:
+ if reduced_ev[-1] < np.log(10**(bayes_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} FRS{1}!'.format(dim, src)
continue
@@ -893,7 +900,7 @@ def plot_sens_corr_angle(data, outfile, outformat, args):
print sep_arrays
if args.stat_method is StatCateg.BAYESIAN:
- reduced_pdat_mask = (sep_arrays[2] > np.log(10**(3/2.))) # Strong degree of belief
+ reduced_pdat_mask = (sep_arrays[2] > np.log(10**(bayes_K))) # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_pdat_mask = (sep_arrays[2] > 4.61) # 90% CL for 2 DOFS via Wilks
reduced_pdat = sep_arrays.T[reduced_pdat_mask].T