1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
import os
import numpy as np
import numpy.ma as ma
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import pyplot as plt
from matplotlib.offsetbox import AnchoredText
from matplotlib import rc
rc('text', usetex=False)
rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18})
fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
# (1, 1, 1, 1, 0, 0),
(1, 1, 1, 0, 1, 0),
]
# FR
# dimension = [3, 6]
dimension = [3, 4, 5, 6, 7, 8]
sigma_ratio = ['0.01']
energy_dependance = 'spectral'
spectral_index = -2
binning = [1e4, 1e7, 5]
fix_mixing = 'False'
fix_mixing_almost = 'False'
scale_region = "1E10"
# Likelihood
likelihood = 'golemfit'
confidence = 2.71 # 90% for 1DOF
outformat = ['png']
def gen_identifier(measured_ratio, source_ratio, dimension, sigma_ratio=0.01):
mr = np.array(measured_ratio) / float(np.sum(measured_ratio))
sr = np.array(source_ratio) / float(np.sum(source_ratio))
si = sigma_ratio
out = '_{0:03d}_{1:03d}_{2:03d}_{3:04d}_sfr_{4:03d}_{5:03d}_{6:03d}_DIM{7}_single_scale'.format(
int(mr[0]*100), int(mr[1]*100), int(mr[2]*100), int(si*1000),
int(sr[0]*100), int(sr[1]*100), int(sr[2]*100), dimension
)
return out
def get_units(dimension):
if dimension == 3: return r' / GeV'
if dimension == 4: return r''
if dimension == 5: return r' / GeV^{-1}'
if dimension == 6: return r' / GeV^{-2}'
if dimension == 7: return r' / GeV^{-3}'
if dimension == 8: return r' / GeV^{-4}'
def myround(x, base=5, up=False, down=False):
if up == down and up is True: assert 0
if up: return int(base * np.round(float(x)/base-0.5))
elif down: return int(base * np.round(float(x)/base+0.5))
else: int(base * np.round(float(x)/base))
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
yranges = [np.inf, -np.inf]
legend_handles = []
ax.set_xlim(dimension[0]-1, dimension[-1]+1)
xticks = [''] + range(dimension[0], dimension[-1]+1) + ['']
ax.set_xticklabels(xticks)
ax.set_xlabel(r'BSM operator dimension ' + r'$d$')
ax.set_ylabel(r'${\rm log}_{10} \Lambda / GeV^{-d+4}$')
for i_dim, dim in enumerate(dimension):
for i_frs, frs in enumerate(fix_sfr_mfr):
outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}/fix_ifr/0_01/'.format(likelihood, dim, spectral_index)
infile = outchain_head + '/bayes_factor/fr_fr_evidence' + gen_identifier(frs[:3], frs[-3:], dim) + '.npy'
try:
array = np.load(infile)
except IOError:
print 'failed to open {0}'.format(infile)
continue
print 'array', array
print 'array', array.shape
scale, llhs = array.T
print 'scale min', scale[np.argmin(llhs)]
null = llhs[np.argmin(llhs)]
# null = llhs[0]
# TODO(shivesh): negative or not?
reduced_ev = 2*(llhs - null)
print 'reduced_ev', reduced_ev
al = scale[reduced_ev < confidence]
if len(al) > 0:
label = '[{0}, {1}, {2}]'.format(frs[3], frs[4], frs[5])
lim = al[0]
print 'frs, dim, lim = ', frs, dim, lim
if lim < yranges[0]: yranges[0] = lim
if lim > yranges[1]: yranges[1] = lim+4
line = plt.Line2D(
(dim-0.1, dim+0.1), (lim, lim), lw=3, color=colour[i_frs], label=label
)
ax.add_line(line)
if i_dim == 0: legend_handles.append(line)
x_offset = i_frs*0.05 - 0.05
ax.annotate(
s='', xy=(dim+x_offset, lim), xytext=(dim+x_offset, lim+3),
arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[i_frs]}
)
else:
print 'No points for DIM {0} FRS {1} NULL {2}!'.format(dim, frs, null)
# print 'scales, reduced_ev', np.dstack([scale.data, reduced_ev.data])
yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
ax.set_ylim(yranges)
ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right')
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for of in outformat:
fig.savefig('../images/freq/full_corr.'+of, bbox_inches='tight', dpi=150)
|