1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : April 04, 2018
"""
Likelihood functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division, print_function
from copy import deepcopy
from functools import partial
import numpy as np
import scipy
from scipy.stats import multivariate_normal, truncnorm
from golemflavor import fr as fr_utils
from golemflavor import gf as gf_utils
from golemflavor.enums import Likelihood, ParamTag, PriorsCateg, StatCateg
from golemflavor.misc import enum_parse, gen_identifier, parse_bool
def GaussianBoundedRV(loc=0., sigma=1., lower=-np.inf, upper=np.inf):
"""Normalised gaussian bounded between lower and upper values"""
low, up = (lower - loc) / sigma, (upper - loc) / sigma
g = scipy.stats.truncnorm(loc=loc, scale=sigma, a=low, b=up)
return g
def multi_gaussian(fr, fr_bf, sigma, offset=-320):
"""Multivariate gaussian likelihood."""
cov_fr = np.identity(3) * sigma
return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset
def llh_argparse(parser):
parser.add_argument(
'--stat-method', default='bayesian',
type=partial(enum_parse, c=StatCateg), choices=StatCateg,
help='Statistical method to employ'
)
def lnprior(theta, paramset):
"""Priors on theta."""
if len(theta) != len(paramset):
raise AssertionError(
'Length of MCMC scan is not the same as the input '
'params\ntheta={0}\nparamset={1}'.format(theta, paramset)
)
for idx, param in enumerate(paramset):
param.value = theta[idx]
ranges = paramset.ranges
for value, range in zip(theta, ranges):
if range[0] <= value <= range[1]:
pass
else: return -np.inf
prior = 0
for param in paramset:
if param.prior is PriorsCateg.GAUSSIAN:
prior += GaussianBoundedRV(
loc=param.nominal_value, sigma=param.std
).logpdf(param.value)
elif param.prior is PriorsCateg.LIMITEDGAUSS:
prior += GaussianBoundedRV(
loc=param.nominal_value, sigma=param.std,
lower=param.ranges[0], upper=param.ranges[1]
).logpdf(param.value)
return prior
def triangle_llh(theta, args, asimov_paramset, llh_paramset):
"""Log likelihood function for a given theta."""
if len(theta) != len(llh_paramset):
raise AssertionError(
'Length of MCMC scan is not the same as the input '
'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
)
hypo_paramset = asimov_paramset
for param in llh_paramset.from_tag(ParamTag.NUISANCE):
hypo_paramset[param.name].value = param.value
spectral_index = -hypo_paramset['astroDeltaGamma'].value
# Assigning llh_paramset values from theta happens in this function.
fr = fr_utils.flux_averaged_BSMu(theta, args, spectral_index, llh_paramset)
flavour_angles = fr_utils.fr_to_angles(fr)
# print 'flavour_angles', map(float, flavour_angles)
for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
param.value = flavour_angles[idx]
if args.likelihood is Likelihood.GOLEMFIT:
llh = gf_utils.get_llh(hypo_paramset)
elif args.likelihood is Likelihood.GF_FREQ:
llh = gf_utils.get_llh_freq(hypo_paramset)
return llh
def ln_prob(theta, args, asimov_paramset, llh_paramset):
dc_asimov_paramset = deepcopy(asimov_paramset)
dc_llh_paramset = deepcopy(llh_paramset)
lp = lnprior(theta, paramset=dc_llh_paramset)
if not np.isfinite(lp):
return -np.inf
return lp + triangle_llh(
theta, args=args, asimov_paramset=dc_asimov_paramset,
llh_paramset=dc_llh_paramset
)
|