aboutsummaryrefslogtreecommitdiffstats
path: root/golemflavor/llh.py
blob: 8283bc0ddda6d9a2f9ecdf4a797f72cddcfccb35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : April 04, 2018

"""
Likelihood functions for the BSM flavor ratio analysis
"""

from __future__ import absolute_import, division, print_function

from copy import deepcopy
from functools import partial

import numpy as np
import scipy
from scipy.stats import multivariate_normal, truncnorm

from golemflavor import fr as fr_utils
from golemflavor import gf as gf_utils
from golemflavor.enums import Likelihood, ParamTag, PriorsCateg, StatCateg
from golemflavor.misc import enum_parse, gen_identifier, parse_bool


def GaussianBoundedRV(loc=0., sigma=1., lower=-np.inf, upper=np.inf):
    """Normalized Gaussian bounded between lower and upper values"""
    low, up = (lower - loc) / sigma, (upper - loc) / sigma
    g = scipy.stats.truncnorm(loc=loc, scale=sigma, a=low, b=up)
    return g


def multi_gaussian(fr, fr_bf, smearing, offset=-320):
    """
    Multivariate Gaussian log likelihood.

    Parameters
    ----------
    fr : List[float], length 3
        The flavour composition to evaluate at.
    fr_bf : List[float], length 3
        The bestfit / injected flavour composition.
    smearing : float
        The amount of smearing.
    offset : float, optional
        An amount to offset the magnitude of the log likelihood.

    Returns
    ----------
    llh : float
        The log likelihood evaluated at `fr`.

    """
    cov_fr = np.identity(3) * pow(smearing, 2)
    return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset


def llh_argparse(parser):
    parser.add_argument(
        '--stat-method', default='bayesian',
        type=partial(enum_parse, c=StatCateg), choices=StatCateg,
        help='Statistical method to employ'
    )


def lnprior(theta, paramset):
    """Priors on theta."""
    if len(theta) != len(paramset):
        raise AssertionError(
            'Length of MCMC scan is not the same as the input '
            'params\ntheta={0}\nparamset={1}'.format(theta, paramset)
        )
    for idx, param in enumerate(paramset):
        param.value = theta[idx]
    ranges = paramset.ranges
    for value, range in zip(theta, ranges):
        if range[0] <= value <= range[1]:
            pass
        else: return -np.inf

    prior = 0
    for param in paramset:
        if param.prior is PriorsCateg.GAUSSIAN:
            prior += GaussianBoundedRV(
                loc=param.nominal_value, sigma=param.std
            ).logpdf(param.value)
        elif param.prior is PriorsCateg.LIMITEDGAUSS:
            prior += GaussianBoundedRV(
                loc=param.nominal_value, sigma=param.std,
                lower=param.ranges[0], upper=param.ranges[1]
            ).logpdf(param.value)
    return prior


def triangle_llh(theta, args, asimov_paramset, llh_paramset):
    """Log likelihood function for a given theta."""
    if len(theta) != len(llh_paramset):
        raise AssertionError(
            'Length of MCMC scan is not the same as the input '
            'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
        )
    hypo_paramset = asimov_paramset
    for param in llh_paramset.from_tag(ParamTag.NUISANCE):
        hypo_paramset[param.name].value = param.value

    spectral_index = -hypo_paramset['astroDeltaGamma'].value
    # Assigning llh_paramset values from theta happens in this function.
    fr = fr_utils.flux_averaged_BSMu(theta, args, spectral_index, llh_paramset)

    flavor_angles = fr_utils.fr_to_angles(fr)
    # print('flavor_angles', list(map(float, flavor_angles)))
    for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
        param.value = flavor_angles[idx]

    if args.likelihood is Likelihood.GOLEMFIT:
        llh = gf_utils.get_llh(hypo_paramset)
    elif args.likelihood is Likelihood.GF_FREQ:
        llh = gf_utils.get_llh_freq(hypo_paramset)
    return llh


def ln_prob(theta, args, asimov_paramset, llh_paramset):
    dc_asimov_paramset = deepcopy(asimov_paramset)
    dc_llh_paramset = deepcopy(llh_paramset)
    lp = lnprior(theta, paramset=dc_llh_paramset)
    if not np.isfinite(lp):
        return -np.inf
    return lp + triangle_llh(
        theta, args=args, asimov_paramset=dc_asimov_paramset,
        llh_paramset=dc_llh_paramset
    )