1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : March 17, 2018
"""
Misc functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division, print_function
import os
import errno
import multiprocessing
from fractions import gcd
import argparse
from operator import attrgetter
import numpy as np
from golemflavor.enums import str_enum
from golemflavor.enums import DataType, Likelihood, Texture
class SortingHelpFormatter(argparse.HelpFormatter):
"""Sort argparse help options alphabetically."""
def add_arguments(self, actions):
actions = sorted(actions, key=attrgetter('option_strings'))
super(SortingHelpFormatter, self).add_arguments(actions)
def solve_ratio(fr):
denominator = reduce(gcd, fr)
f = [int(x/denominator) for x in fr]
allow = (1, 2, 0)
if f[0] not in allow or f[1] not in allow or f[2] not in allow:
return '{0:.2f}_{1:.2f}_{2:.2f}'.format(fr[0], fr[1], fr[2])
else:
return '{0}_{1}_{2}'.format(f[0], f[1], f[2])
def gen_identifier(args):
f = '_DIM{0}'.format(args.dimension)
f += '_sfr_' + solve_ratio(args.source_ratio)
if args.data in [DataType.ASIMOV, DataType.REALISATION]:
f += '_mfr_' + solve_ratio(args.injected_ratio)
if args.texture is not Texture.NONE:
f += '_{0}'.format(str_enum(args.texture))
return f
def gen_outfile_name(args):
"""Generate a name for the output file based on the input args.
Parameters
----------
args : argparse
argparse object to print
"""
return args.outfile + gen_identifier(args)
def parse_bool(s):
"""Parse a string to a boolean.
Parameters
----------
s : str
String to parse
Returns
----------
bool
Examples
----------
>>> from misc import parse_bool
>>> print(parse_bool('true'))
True
"""
if s.lower() == 'true':
return True
elif s.lower() == 'false':
return False
else:
raise ValueError
def parse_enum(e):
return '{0}'.format(e).split('.')[1].lower()
def print_args(args):
"""Print the input arguments.
Parameters
----------
args : argparse
argparse object to print
"""
arg_vars = vars(args)
for key in sorted(arg_vars):
print('== {0:<25} = {1}'.format(key, arg_vars[key]))
def enum_parse(s, c):
return c[s.upper()]
def make_dir(outfile):
try:
os.makedirs(outfile[:-len(os.path.basename(outfile))])
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(outfile[:-len(os.path.basename(outfile))]):
pass
else:
raise
def remove_option(parser, arg):
for action in parser._actions:
if (vars(action)['option_strings']
and vars(action)['option_strings'][0] == arg) \
or vars(action)['dest'] == arg:
parser._remove_action(action)
for action in parser._action_groups:
vars_action = vars(action)
var_group_actions = vars_action['_group_actions']
for x in var_group_actions:
if x.dest == arg:
var_group_actions.remove(x)
return
def seed_parse(s):
if s.lower() == 'none':
return None
else:
return int(s)
def thread_type(t):
if t.lower() == 'max':
return multiprocessing.cpu_count()
else:
return int(t)
def thread_factors(t):
for x in reversed(range(int(np.ceil(np.sqrt(t)))+1)):
if t%x == 0:
return (x, int(t/x))
def centers(x):
return (x[:-1]+x[1:])*0.5
def get_units(dimension):
if dimension == 3: return r' / \:{\rm GeV}'
if dimension == 4: return r''
if dimension == 5: return r' / \:{\rm GeV}^{-1}'
if dimension == 6: return r' / \:{\rm GeV}^{-2}'
if dimension == 7: return r' / \:{\rm GeV}^{-3}'
if dimension == 8: return r' / \:{\rm GeV}^{-4}'
def calc_nbins(x):
n = (np.max(x) - np.min(x)) / (2 * len(x)**(-1./3) * (np.percentile(x, 75) - np.percentile(x, 25)))
return np.floor(n)
def calc_bins(x):
nbins = calc_nbins(x)
return np.linspace(np.min(x), np.max(x)+2, num=nbins+1)
def most_likely(arr):
"""Return the densest region given a 1D array of data."""
binning = calc_bins(arr)
harr = np.histogram(arr, binning)[0]
return centers(binning)[np.argmax(harr)]
def interval(arr, percentile=68.):
"""Returns the *percentile* shortest interval around the mode."""
center = most_likely(arr)
sarr = sorted(arr)
delta = np.abs(sarr - center)
curr_low = np.argmin(delta)
curr_up = curr_low
npoints = len(sarr)
while curr_up - curr_low < percentile/100.*npoints:
if curr_low == 0:
curr_up += 1
elif curr_up == npoints-1:
curr_low -= 1
elif sarr[curr_up]-sarr[curr_low-1] < sarr[curr_up+1]-sarr[curr_low]:
curr_low -= 1
elif sarr[curr_up]-sarr[curr_low-1] > sarr[curr_up+1]-sarr[curr_low]:
curr_up += 1
elif (curr_up - curr_low) % 2:
# they are equal so step half of the time up and down
curr_low -= 1
else:
curr_up += 1
return sarr[curr_low], center, sarr[curr_up]
def myround(x, base=2, up=False, down=False):
if up == down and up is True: assert 0
if up: return int(base * np.round(float(x)/base-0.5))
elif down: return int(base * np.round(float(x)/base+0.5))
else: int(base * np.round(float(x)/base))
|