aboutsummaryrefslogtreecommitdiffstats
path: root/plot_llh/LVCPT.py
blob: e55c3b435739f265f0b241a506dc45d94cb87b7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

# coding: utf-8

## The Theory

import numpy
import MinimalTools as MT
import PhysConst as PC
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.collections as mco
import matplotlib as mpl
import scipy.interpolate as interpolate
import scipy.integrate as integrate
import scipy as sp
from numpy import linalg as LA

use_cython = False

if use_cython:
    import cython.cLVCPT as clv

mpl.rc('font', family='serif', size=20)

pc = PC.PhysicsConstants()

degree = np.pi/180.0
pc.th12 = 33.36*degree#33.48*degree
pc.th23 = 45.*degree#42.3*degree
pc.th13 = 8.66*degree#8.5*degree
pc.delta1 = 0.0#300.0*degree#306.*degree # perhaps better just set to 0.
pc.dm21sq = 7.5e-5
pc.dm31sq = 2.47e-3#2.457e-3
pc.Refresh()

MT.calcU(pc)
DELTAM2 = MT.flavorM2(pc)

def Hamiltonian(Enu, LVATERM = np.zeros((3,3), dtype=numpy.complex),
                LVCTERM = np.zeros((3,3), dtype=numpy.complex)):
    return DELTAM2/(2.0*Enu) + LVATERM + Enu*LVCTERM 

def OscProbFromMixingMatrix(alpha, beta, MixMatrix):
    return sum([(np.absolute(MixMatrix[i][alpha])*np.absolute(MixMatrix[i][beta]))**2 for i in range(pc.numneu)] )
    #return sum([(np.absolute(MixMatrix[i][alpha]))**2*(np.absolute(MixMatrix[i][beta]))**2 for i in range(pc.numneu)] )
    #prob = 0.0;
    #for i in range(pc.numneu) :
    #    prob += (np.absolute(MixMatrix[i][alpha]))**2*(np.absolute(MixMatrix[i][beta]))**2
    #return prob

def OscProb(alpha, Enu, LVATERM = np.zeros((3,3), dtype=numpy.complex),
                LVCTERM = np.zeros((3,3), dtype=numpy.complex)):
    eigvals, eigvec = MT.eigenvectors(Hamiltonian(Enu, LVATERM=LVATERM, LVCTERM=LVCTERM))
    #print eigvec.dtype
    if use_cython:
        return [ clv.OscProbFromMixingMatrix(alpha,beta,eigvec) for beta in range(pc.numneu)]
    else:
        return [ OscProbFromMixingMatrix(alpha,beta,eigvec) for beta in range(pc.numneu)]

def FlavorRatio(initial_flavor_ratio, Enu, LVATERM = np.zeros((3,3), dtype=numpy.complex),
                LVCTERM = np.zeros((3,3), dtype=numpy.complex)):
    final_flavor_ratio = [0.0]*pc.numneu
    osc_prob_array = [OscProb(beta,Enu,LVATERM=LVATERM,LVCTERM=LVCTERM) for beta in range(pc.numneu)]

    for alpha in range(pc.numneu):
        for beta,phi in enumerate(initial_flavor_ratio):
            final_flavor_ratio[alpha] += osc_prob_array[beta][alpha]*phi
    return final_flavor_ratio

def RRR(initial_flavor_ratio, Enu, LVATERM = np.zeros((3,3), dtype=numpy.complex),
                LVCTERM = np.zeros((3,3), dtype=numpy.complex)):
    ffr = FlavorRatio(initial_flavor_ratio,Enu,LVATERM=LVATERM,LVCTERM=LVCTERM)
    return ffr[1]/ffr[0]
def SSS(initial_flavor_ratio, Enu, LVATERM = np.zeros((3,3), dtype=numpy.complex),
                LVCTERM = np.zeros((3,3), dtype=numpy.complex)):
    ffr = FlavorRatio(initial_flavor_ratio,Enu,LVATERM=LVATERM,LVCTERM=LVCTERM)
    return ffr[2]/ffr[1]

def PointToList(p1,p2):
    return [[p1[0],p2[0]],[p1[1],p2[1]]]

def PointFromFlavor(origin,scale,flavor_ratio_list):
    nu_e_vec = np.array([1.,0.])*scale
    nu_mu_vec = np.array([1./2.,np.sqrt(3.)/2.])*scale
    nu_tau_vec = np.array([-1./2.,np.sqrt(3.)/2.])*scale
    fpos = origin + flavor_ratio_list[0]*nu_e_vec + flavor_ratio_list[1]*nu_mu_vec
    return [fpos[0],fpos[1]]

def MakeFlavorTriangle(list_of_flavor_ratios, scale = 8,
                       p = np.array([0.,0.]), save_file = False, PlotPoints = False, PlotTrayectories = False, figure = None, alpha = 1.0,
                       filename = "triangle",icolor = "green", icolormap = "Greens", divisions = 5, initial_flavor_ratio = [1,0,0],
                       term = "a", subdivisions = False, triangle_collection = None, color_scale = "lin", return_fig = True, addtext = "",
                       add_default_text = True, ilw = 1., slw = 0.75, output_format = "eps", inner_line_color = "k", plot_color_bar = False):
    # i will be nice ...
    list_of_flavor_ratios = np.array(list_of_flavor_ratios)

    if figure == None:
        fig = plt.figure(figsize=(scale,scale), frameon = False)
    else:
        fig = figure

    ax = fig.add_axes([0, 0, 1, 1])
    ax.axis('off')

    # delete extra lines
    frame = plt.gca()
    frame.axes.get_xaxis().set_visible(False)
    frame.axes.get_yaxis().set_visible(False)

    s0 = np.array([1.,0.])*scale
    s1 = np.array([1./2.,np.sqrt(3.)/2.])*scale
    s2 = np.array([1./2.,-np.sqrt(3.)/2.])*scale

    # make triangle outer frame

    plt.plot(*PointToList(p, p+s0), color = "k", lw = 4)
    plt.plot(*PointToList(p, p+s1), color = "k", lw = 2)
    plt.plot(*PointToList(p+s0, p+s1), color = "k", lw = 2)

    # put outer triangle labels

    # ax.text((p+s0*0.5+s0*0.025)[0], (p+s0*0.5-np.array([0,0.15*scale]))[1],r"$\alpha^{\oplus}_{e}$",
    #             horizontalalignment="center",fontsize = 50, zorder = 10)
    # ax.text((p+s1*0.5-0.2*s0)[0], (p+s1*0.5+0.1*s0)[1]+scale*0.1,r"$\alpha^{\oplus}_{\tau}$",
    #             horizontalalignment="center",fontsize = 50, zorder = 10, rotation = 60.)
    # ax.text((p+s1*0.5 + 0.7*s0)[0], (p+s1*0.5 + 0.6*s0)[1]+0.05*scale,r"$\alpha^{\oplus}_{\mu}$",
    #             horizontalalignment="center",fontsize = 50, zorder = 10, rotation = -60)

    ax.text((p+s0*0.5+s0*0.025)[0], (p+s0*0.5-np.array([0,0.15*scale]))[1],r"$f_{e,\oplus}$",
                horizontalalignment="center",fontsize = 50, zorder = 10, rotation = 60.)
    ax.text((p+s1*0.5-0.2*s0)[0], (p+s1*0.5+0.1*s0)[1]+scale*0.1,r"$f_{\tau, \oplus}$",
                horizontalalignment="center",fontsize = 50, zorder = 10, rotation = -60.)
    ax.text((p+s1*0.5 + 0.7*s0)[0], (p+s1*0.5 + 0.6*s0)[1]+0.05*scale,r"$f_{\mu, \oplus}$",
                horizontalalignment="center",fontsize = 50, zorder = 10)

    # construct triangle grid
    fsl = 35
    for i in range(divisions+1):
        subsize = 1./float(divisions)

        ax.text((p+s0*subsize*float(i))[0], (p+s0*subsize*float(i)-np.array([0,0.05*scale]))[1],str(i*subsize),
                horizontalalignment="center",fontsize = fsl)
        plt.plot(*PointToList(p+s0*subsize*float(i), p+s1+s2*subsize*float(i)), color = inner_line_color, lw = ilw, ls = "dashed", zorder = -1)
        ax.text((p+s1-s1*subsize*float(i)-np.array([0.06*scale,0.0]))[0], (p+s1-s1*subsize*float(i))[1],str(i*subsize),
                horizontalalignment="center",fontsize = fsl)
        plt.plot(*PointToList(p+s0*subsize*float(divisions-i), p+s1-s1*subsize*float(i)), color = inner_line_color, lw = ilw, ls = "dashed", zorder = -1)

        ax.text((p+s1+s2*subsize*float(i)+np.array([0.05*scale,0.0]))[0], (p+s1+s2*subsize*float(i))[1],str((divisions-i)*subsize),
                horizontalalignment="center",fontsize = fsl)
        plt.plot(*PointToList(p+s1*subsize*float(divisions-i), p+s1+s2*subsize*float(i)), color = inner_line_color, lw = ilw, ls = "dashed", zorder = -1)

        if subdivisions and i < divisions:
            plt.plot(*PointToList(p+s0*subsize*float(i+0.5), p+s1+s2*subsize*float(i+0.5)), color = inner_line_color, lw = slw, ls = "dotted", zorder = -1)
        if subdivisions and i > 0:
            plt.plot(*PointToList(p+s0*subsize*float(divisions-(i-0.5)), p+s1-s1*subsize*float(i-0.5)), color = inner_line_color, lw = slw, ls = "dotted", zorder = -1)
            plt.plot(*PointToList(p+s1*subsize*float(divisions-(i-0.5)), p+s1+s2*subsize*float(i-0.5)), color = inner_line_color, lw = slw, ls = "dotted", zorder = -1)

    # chi2
    if (triangle_collection != None):
        total_points = float(sum([ triangle.number_of_points for triangle in triangle_collection]))
        max_points = float(max([ triangle.number_of_points for triangle in triangle_collection]))
        delta_llh = [-2*(np.log10(triangle.number_of_points) - np.log10(max_points)) for triangle in triangle_collection]

    # plot triangle collection
    if (triangle_collection != None):
        # get total number of points
        total_points = float(sum([ triangle.number_of_points for triangle in triangle_collection]))
        max_points = float(max([ triangle.number_of_points for triangle in triangle_collection]))
        color_map = plt.get_cmap(icolormap)
        for i_triangle, triangle in enumerate(triangle_collection):
            if triangle.number_of_points > 0:
                xx,yy = zip(*triangle.coordinates)
                if color_scale == "lin":
                    plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(0.75), alpha = np.sqrt(float(triangle.number_of_points)/max_points))
                    #plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(float(triangle.number_of_points)/max_points), alpha = alpha)
                elif color_scale == "log":
                    # plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(0.75), alpha = (np.log10(float(triangle.number_of_points))/np.log10(max_points)))
                    if delta_llh[i_triangle] > 2.30:
                        plt.fill(xx,yy,lw = 0., zorder = -0.8, color = 'blue', alpha = np.sqrt(float(triangle.number_of_points)/max_points))
                    else:
                        plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(0.75), alpha = np.sqrt(float(triangle.number_of_points)/max_points))
                    #plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(0.7), alpha = (np.log10(float(triangle.number_of_points))/np.log10(max_points))**(2./3.))
                    #plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(np.log10(float(triangle.number_of_points))/np.log10(max_points)), alpha = alpha)
                    #plt.fill(xx,yy,lw = 0., zorder = -0.8, color = color_map(np.log10(float(triangle.number_of_points))))
                else : 
                    raise NameError('Error. Love CA.')

        if(plot_color_bar):
            # the color bar magic
            # location set on 0 to 1 scales.
            left = 0.1
            bottom = -0.25
            width = 0.8
            height = 0.025
            cbaxes = fig.add_axes([left,bottom,width,height])
            if color_scale == "lin":
                norm = mpl.colors.Normalize(vmin = 0., vmax = max_points)
                label_format='%.0e'
            elif color_scale == "log":
                # norm = mpl.colors.Normalize(vmin = 0., vmax = 1.0)
                norm = mpl.colors.LogNorm(vmin = 1., vmax = max_points)
                label_format=None
            else :
                raise NameError('Error. Love CA.')
            mpl.rcParams.update({'font.size': 10})
            triangle_colorbar = mpl.colorbar.ColorbarBase(cbaxes, cmap = color_map, norm = norm,
                                                          orientation = "horizontal", spacing = "proportional",
							 # )
                                                          format =label_format)
            cbaxes.set_xlabel("Likelihood", fontsize = 12)

    # plot flavor ratio points
    if PlotTrayectories :
        if len(list_of_flavor_ratios.shape) == 3 :
            for flavor_ratio_l in list_of_flavor_ratios:
                flv_ratio_coords = map(lambda f:PointFromFlavor(p,scale,np.array(f)),flavor_ratio_l)
                xc, yc = zip(*flv_ratio_coords)
                plt.plot(xc,yc, color = icolor,
                        ms = 10, linewidth = 4, zorder = 0)
        elif len(list_of_flavor_ratios.shape) == 2 :
            flv_ratio_coords = map(lambda f:PointFromFlavor(p,scale,np.array(f)),list_of_flavor_ratios)
            xc, yc = zip(*flv_ratio_coords)

            plt.plot(xc,yc, color = icolor,
                    ms = 10, linewidth = 4, zorder = 0)
        else:
            raise NameError('Check your input flavor list array and the joined flag. Love CA.')
    elif PlotPoints:
        if len(list_of_flavor_ratios.shape) !=2 :
            print len(list_of_flavor_ratios.shape)
            raise NameError('Check your input flavor list array and the joined flag. Love CA.')
        for i,flavor_ratio in enumerate(list_of_flavor_ratios):
            if len(icolor) != len(list_of_flavor_ratios):
                icolor_ = icolor
            else:
                icolor_ = icolor[i]
            plt.plot(*PointFromFlavor(p,scale,np.array(flavor_ratio)), color = icolor_,
                     marker = 'o', ms = 10, linewidth = 0,
                     markeredgecolor=None,markeredgewidth=0.1, zorder = 1000)

    # put back color scale axis
    if add_default_text:
        ax.text((s0/5.+0.9*s1)[0],(s0/5.+0.9*s1)[1],
                "LV "+term+"-term scan with\n $\ \phi_e:\ \phi_\\mu:\ \phi_\\tau = "+str(initial_flavor_ratio[0])+":\ "+str(initial_flavor_ratio[1])+":\ "+str(initial_flavor_ratio[2])+"$"+" \n "+addtext,
                fontsize = 20)

    if(save_file):
        # save figure
        plt.savefig("./plots/"+filename+"."+output_format, dpi = 600, bbox_inches='tight')
    else:
        # show figure
        plt.show()
    if return_fig:
        return fig


def s_bario(p,p0,p1,p2):
    return (p0[1]*p2[0] - p0[0]*p2[1] + (p2[1] - p0[1])*p[0] + (p0[0] - p2[0])*p[1])

def t_bario(p,p0,p1,p2):
    return (p0[0]*p1[1] - p0[1]*p1[0] + (p0[1] - p1[1])*p[0] + (p1[0] - p0[0])*p[1])

def IsInTriangle(p,p0,p1,p2,area):
    s = s_bario(p,p0,p1,p2)
    t = t_bario(p,p0,p1,p2)
    #print s,t,2.0*area - s - t
    return  s >= -1.e-15 and  t >= -1.0e-15 and s+t <= 2.0*area


class Triangle:
    coordinates = []
    area = 0.0
    number_of_points = 0.0
    n_t = 0
    i = 0 
    j = 0
    orientation = ""
    
    def IsPointIn(self,point):
        p0 = self.coordinates[0]
        p1 = self.coordinates[1]
        p2 = self.coordinates[2]
        return IsInTriangle(point,p0,p1,p2,self.area)


def GenerateTriangles(scale, divisions, p = np.array([0.,0.])):
    s0 = np.array([1.,0.])*scale/float(divisions)
    s1 = np.array([1./2.,np.sqrt(3.)/2.])*scale/float(divisions)
    s2 = np.array([1./2.,-np.sqrt(3.)/2.])*scale/float(divisions)
    
    area = np.sqrt(3)*(LA.norm(s0)/2.0)**2
    
    n_t = 0
    
    triangle_collection = []
    for i in range(divisions):
        for j in range(divisions-i):
            lower_triangle = Triangle()

            p0_l = p + i*s0 + j*s1 
            p1_l = p0_l + s0
            p2_l = p0_l + s1
            
            lower_triangle.coordinates = [p0_l,p1_l,p2_l]
            lower_triangle.n_t = n_t
            lower_triangle.i = i
            lower_triangle.j = j
            lower_triangle.orientation = "L"
            lower_triangle.area = area
            
            n_t += 1
            # append to triangle collection
            triangle_collection.append(lower_triangle)
            
            upper_triangle = Triangle()

            p0_u = p2_l
            p1_u = p1_l
            p2_u = p1_l + s1
            
            upper_triangle.coordinates = [p0_u,p1_u,p2_u]
            upper_triangle.n_t = n_t
            upper_triangle.i = i
            upper_triangle.j = j
            upper_triangle.orientation = "U"
            upper_triangle.area = area
            
            n_t += 1
            # append to triangle collection
            triangle_collection.append(upper_triangle)
    return triangle_collection

def AddPointToTriangleCollectionLegacy(flavor_ratio, triangle_collection,
                  p = np.array([0.,0.]), scale = 8, divisions = 10):
    point = PointFromFlavor(p,scale,np.array(flavor_ratio))
    electron = 0; tau = 2;
    # the silly way
    for triangle in triangle_collection:
        if(triangle.IsPointIn(point)):
            triangle.number_of_points += 1.

def AddPointToTriangleCollection(flavor_ratio, triangle_collection,
                  p = np.array([0.,0.]), scale = 8, divisions = 10):
    point = PointFromFlavor(p,scale,np.array(flavor_ratio))
    electron = 0; muon = 1; tau = 2;
    # the smart way
    u_i = int(flavor_ratio[electron]*float(divisions))
    u_j = int(flavor_ratio[muon]*float(divisions))
    index = u_i*(2*divisions-u_i+1) + 2*u_j
    if triangle_collection[index].IsPointIn(point):
        triangle_collection[index].number_of_points += 1.
    else:
        triangle_collection[index+1].number_of_points += 1.
# legacy
    #elif triangle_collection[index+1].IsPointIn(point):
    #    triangle_collection[index+1].number_of_points += 1.
    #else:
    #    print "Math error."
    #    print point, "\n",u_i, u_j, "\n", triangle_collection[index].coordinates, "\n", triangle_collection[index+1].coordinates
    #    raise NameError("Error triangle location math")

class AnarchySampling:
    def __init__(self, n_sample, LV_scale_1, LV_scale_2, term):
        self.n_sample = n_sample
        self.th12_sample = np.arcsin(np.sqrt(np.random.uniform(0.,1., size=n_sample)))
        self.th13_sample = np.arccos(np.sqrt(np.sqrt(np.random.uniform(0.,1., size=n_sample))))
        self.th23_sample = np.arcsin(np.sqrt(np.random.uniform(0.,1., size=n_sample)))
        self.delta_sample = np.random.uniform(0.,2.*np.pi, size=n_sample)

        self.LV_scale_1 = LV_scale_1
        self.LV_scale_2 = LV_scale_2

        self.term = term

def GenerateFlavorRatioPoints(Initial_Flavor_Ratio, SamplingObject, gamma = 2.0,
                              Log10Emax = 7., Log10Emin = 4.0, Epoints = 30,
                              save_list = False, save_avg = True):
    flavor_tray_list = []
    flavor_avg_list = []

    # energy things

    Erange = np.logspace(Log10Emin,Log10Emax,Epoints) # in GeV
    Emin = Erange[0]
    Emax = Erange[-1]

    if gamma == 1 or gamma == 1.0:
        spectral_normalization = np.log(Emax)-np.log(Emin)
    else:
        spectral_normalization = (Emax**(1.-gamma) - Emin**(1.-gamma))/(1.-gamma)

    spectral_function = lambda Enu: Enu**(-gamma)/spectral_normalization

    # loop over random parameters
    for i in range(SamplingObject.n_sample):
        lv_term = MT.LVP()

        lv_term.th12 = SamplingObject.th12_sample[i]
        lv_term.th13 = SamplingObject.th13_sample[i]
        lv_term.th23 = SamplingObject.th23_sample[i]
        lv_term.delta1 = SamplingObject.delta_sample[i]

        lv_term.LVS21 = SamplingObject.LV_scale_1
        lv_term.LVS31 = SamplingObject.LV_scale_2

        lv_term.Refresh()

        LVTERM = MT.LVTerm(lv_term);

        if SamplingObject.term == "a":
            flavor_ratio_list = np.array(map(lambda Enu : FlavorRatio(Initial_Flavor_Ratio, Enu*pc.GeV, LVATERM = LVTERM), Erange))
        elif SamplingObject.term == "c":
            flavor_ratio_list = np.array(map(lambda Enu : FlavorRatio(Initial_Flavor_Ratio, Enu*pc.GeV, LVCTERM = LVTERM), Erange))
        else :
            raise NameError('Only a or c term.'+ str(term))

        if save_avg: 
            if Epoints != 1:
                flavor_avg = [0.]*lv_term.numneu
                for alpha in range(lv_term.numneu):
                    #inter = interpolate.interp1d(Erange,flavor_ratio_list[:,alpha])
                    inter = interpolate.UnivariateSpline(Erange,flavor_ratio_list[:,alpha])
                    flavor_avg[alpha] = integrate.quad(lambda Enu : inter(Enu)*spectral_function(Enu),
                                                       Emin,Emax, limit = 75, epsrel = 1e-2, epsabs = 1.0e-2)[0]
                    #flavor_avg[alpha] = integrate.quadrature(lambda Enu : inter(Enu)*spectral_function(Enu),
                    #                                         Emin,Emax, maxiter = 75, rtol = 1e-3, tol = 1.e-3)[0]
                flavor_avg_list.append(flavor_avg)
            else:
                flavor_avg = flavor_ratio_list[0]
                flavor_avg_list.append(flavor_avg)

        if save_list:
            flavor_tray_list.append(flavor_ratio_list)

    if save_list and save_avg:
        return flavor_tray_list, flavor_avg_list
    elif save_list:
        return flavor_tray_list
    elif save_avg:
        return flavor_avg_list
    else :
        print "Math is broken."
        return None