1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
#! /usr/bin/env python
"""
Sample points from a gaussian likelihood
"""
from __future__ import absolute_import, division
import sys
import argparse
import multiprocessing
import numpy as np
from scipy.stats import multivariate_normal
import emcee
import tqdm
MEASURED_FR = [1, 1, 1]
SIGMA = 0.001
def solve_ratio(fr):
denominator = reduce(gcd, fr)
return [int(x/denominator) for x in fr]
def angles_to_fr(angles):
sphi4, c2psi = angles
psi = (0.5)*np.arccos(c2psi)
sphi2 = np.sqrt(sphi4)
cphi2 = 1. - sphi2
spsi2 = np.sin(psi)**2
cspi2 = 1. - spsi2
x = sphi2*cspi2
y = sphi2*spsi2
z = cphi2
return x, y, z
def triangle_llh(theta):
"""-Log likelihood function for a given theta."""
fr = angles_to_fr(theta)
fr_bf = MEASURED_FR
cov_fr = np.identity(3) * SIGMA
return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr))
def lnprior(theta):
"""Priors on theta."""
sphi4, c2psi = theta
# Flavour ratio bounds
if 0. <= sphi4 <= 1.0 and -1.0 <= c2psi <= 1.0:
pass
else: return -np.inf
return 0.
def lnprob(theta):
"""Prob function for mcmc."""
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + triangle_llh(theta)
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--measured-ratio', type=int, nargs=3, default=[1, 1, 1],
help='Set the central value for the measured flavour ratio at IceCube'
)
parser.add_argument(
'--sigma-ratio', type=float, default=0.01,
help='Set the 1 sigma for the measured flavour ratio'
)
parser.add_argument(
'--burnin', type=int, default=100,
help='Amount to burnin'
)
parser.add_argument(
'--nwalkers', type=int, default=100,
help='Number of walkers'
)
parser.add_argument(
'--nsteps', type=int, default=2000,
help='Number of steps to run'
)
parser.add_argument(
'--seed', type=int, default=99,
help='Set the random seed value'
)
parser.add_argument(
'--outfile', type=str, default='./untitled',
help='Path to output chains'
)
args = parser.parse_args()
return args
def main():
args = parse_args()
np.random.seed(args.seed)
global MEASURED_FR
global SIGMA
MEASURED_FR = np.array(args.measured_ratio) / float(np.sum(args.measured_ratio))
SIGMA = args.sigma_ratio
print 'MEASURED_FR = {0}'.format(MEASURED_FR)
print 'SIGMA = {0}'.format(SIGMA)
ndim = 2
nwalkers = args.nwalkers
ntemps = 1
burnin = args.burnin
betas = np.array([1e0, 1e-1, 1e-2, 1e-3, 1e-4])
p0_base = [0.5, 0.5]
p0_std = [.2, 0.2]
print 'p0_base', p0_base
print 'p0_std', p0_std
p0 = np.random.normal(p0_base, p0_std, size=[ntemps, nwalkers, ndim])
print map(lnprior, p0[0])
# threads = multiprocessing.cpu_count()
threads = 1
sampler = emcee.PTSampler(
ntemps, nwalkers, ndim, triangle_llh, lnprior, threads=threads
)
print "Running burn-in"
for result in tqdm.tqdm(sampler.sample(p0, iterations=burnin), total=burnin):
pos, prob, state = result
sampler.reset()
print "Finished burn-in"
nsteps = args.nsteps
print "Running"
for _ in tqdm.tqdm(sampler.sample(pos, iterations=nsteps), total=nsteps):
pass
print "Finished"
mr = solve_ratio(MEASURED_FR)
outfile = args.outfile+'_{0}_{1}_{2}_{3:.1E}'.format(
mr[0], mr[1], mr[2], SIGMA
)
samples = sampler.chain[0, :, :, :].reshape((-1, ndim))
print 'acceptance fraction', sampler.acceptance_fraction
print 'sum of acceptance fraction', np.sum(sampler.acceptance_fraction)
print 'np.unique(samples[:,0]).shape', np.unique(samples[:,0]).shape
try:
print 'autocorrelation', sampler.acor
except:
print 'WARNING : NEED TO RUN MORE SAMPLES FOR FILE ' + outfile
print 'outfile = ', outfile
fr_samples = np.array(map(angles_to_fr, samples))
np.save(outfile+'.npy', fr_samples)
print "DONE!"
main.__doc__ = __doc__
if __name__ == '__main__':
main()
|