aboutsummaryrefslogtreecommitdiffstats
path: root/plot_llh/sample.py
blob: 430962759f72d728397b6b0bd6ceade9a174fb97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#! /usr/bin/env python
"""
Sample points for a specific scenario
"""

from __future__ import absolute_import, division

import sys
sys.path.extend(['.', '../'])

import argparse
from functools import partial

import numpy as np
from scipy.stats import multivariate_normal

from utils import fr as fr_utils
from utils import llh as llh_utils
from utils import mcmc as mcmc_utils
from utils import misc as misc_utils
from utils.param import Param, ParamSet, get_paramsets
from utils.enums import MixingScenario, MCMCSeedType


def triangle_llh(theta, args):
    """-Log likelihood function for a given theta."""
    fr = fr_utils.angles_to_fr(theta)
    fr_bf = args.measured_ratio
    cov_fr = np.identity(3) * args.sigma_ratio
    return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr))


def ln_prior(theta):
    """Priors on theta."""
    sphi4, c2psi = theta
    # Flavour ratio bounds
    if 0. <= sphi4 <= 1.0 and -1.0 <= c2psi <= 1.0:
        pass
    else: return -np.inf
    return 0.


def ln_prob(theta, args):
    """Prob function for mcmc."""
    lp = ln_prior(theta)
    if not np.isfinite(lp):
        return -np.inf
    return lp + triangle_llh(theta, args)


def process_args(args):
    """Process the input args."""
    if args.fix_mixing is MixingScenario.NONE:
        raise AssertionError('Must set a mixing scenario using --fix-mixing')
    if not args.fix_source_ratio:
        raise AssertionError('Must set source ratio using --fix-source-ratio')

    args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
    if args.fix_mixing is MixingScenario.T12:
        s12_2, c13_4, s23_2, dcp = 0.5, 1.0, 0.0, 0.
    elif args.fix_mixing is MixingScenario.T13:
        s12_2, c13_4, s23_2, dcp = 0.0, 0.25, 0.0, 0.
    elif args.fix_mixing is MixingScenario.T23:
        s12_2, c13_4, s23_2, dcp = 0.0, 1.0, 0.5, 0.

    mm = np.array(
        fr_utils.angles_to_u((s12_2, c13_4, s23_2, dcp)), dtype=np.complex256
    )
    args.measured_ratio = fr_utils.u_to_fr(args.source_ratio, mm)

    if not args.fix_scale:
        args.scale, args.scale_region = fr_utils.estimate_scale(args)


def parse_args(args=None):
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(
        description="BSM flavour ratio analysis",
        formatter_class=misc_utils.SortingHelpFormatter,
    )
    parser.add_argument(
        '--seed', type=misc_utils.seed_parse, default='25',
        help='Set the random seed value'
    )
    parser.add_argument(
        '--threads', type=misc_utils.thread_type, default='1',
        help='Set the number of threads to use (int or "max")'
    )
    parser.add_argument(
        '--outfile', type=str, default='./untitled',
        help='Path to output chains'
    )
    parser.add_argument(
        '--plot-statistic', type=misc_utils.parse_bool, default='False',
        help='Plot MultiNest evidence or LLH value'
    )
    fr_utils.fr_argparse(parser)
    llh_utils.likelihood_argparse(parser)
    mcmc_utils.mcmc_argparse(parser)
    if args is None: return parser.parse_args()
    else: return parser.parse_args(args.split())


def main():
    args = parse_args()
    process_args(args)
    misc_utils.print_args(args)

    if args.seed is not None:
        np.random.seed(args.seed)

    paramset = ParamSet([
        Param(name='sphi4', value=0.5, ranges=[0.0,  1.0], std=0.2),
        Param(name='c2psi', value=0.0, ranges=[-1.0, 1.0], std=0.2)
    ])

    outfile = misc_utils.gen_outfile_name(args)
    print '== {0:<25} = {1}'.format('outfile', outfile)

    if args.run_mcmc:
        ndim = len(paramset)
        print paramset

        if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
            p0 = mcmc_utils.flat_seed(paramset, nwalkers=args.nwalkers)

        samples = mcmc_utils.mcmc(
            p0       = p0,
            ln_prob  = partial(ln_prob, args=args),
            ndim     = ndim,
            nwalkers = args.nwalkers,
            burnin   = args.burnin,
            nsteps   = args.nsteps,
            threads  = args.threads
        )
        fr_chains = np.array(map(fr_utils.angles_to_fr, samples), dtype=float)
        mcmc_utils.save_chains(fr_chains, outfile)
    print "DONE!"


main.__doc__ = __doc__


if __name__ == '__main__':
    main()