1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
#! /usr/bin/env python
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : April 25, 2019
"""
Sample points for a specific scenario
"""
from __future__ import absolute_import, division
import argparse
from copy import deepcopy
from functools import partial
import numpy as np
from golemflavor import fr as fr_utils
from golemflavor import llh as llh_utils
from golemflavor import mcmc as mcmc_utils
from golemflavor import misc as misc_utils
from golemflavor import plot as plot_utils
from golemflavor.enums import MCMCSeedType, ParamTag, PriorsCateg, Texture
from golemflavor.param import Param, ParamSet
def define_nuisance():
"""Define the nuisance parameters."""
tag = ParamTag.SM_ANGLES
nuisance = []
g_prior = PriorsCateg.GAUSSIAN
lg_prior = PriorsCateg.LIMITEDGAUSS
e = 1e-9
nuisance.extend([
Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
Param(
name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
),
Param(
name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
)
])
return ParamSet(nuisance)
def get_paramsets(args, nuisance_paramset):
"""Make the paramsets for generating the Asmimov MC sample and also running
the MCMC.
"""
asimov_paramset = []
llh_paramset = []
llh_paramset.extend(
[x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
)
for parm in llh_paramset:
parm.value = args.__getattribute__(parm.name)
boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
tag = ParamTag.SCALE
llh_paramset.append(
Param(
name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
misc_utils.get_units(args.dimension)+r'\right )',
tag=tag
)
)
llh_paramset = ParamSet(llh_paramset)
tag = ParamTag.BESTFIT
flavor_angles = fr_utils.fr_to_angles([1, 1, 1])
asimov_paramset.extend([
Param(name='astroFlavorAngle1', value=flavor_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
Param(name='astroFlavorAngle2', value=flavor_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
])
asimov_paramset = ParamSet(asimov_paramset)
return asimov_paramset, llh_paramset
def nuisance_argparse(parser):
nuisance = define_nuisance()
for parm in nuisance:
parser.add_argument(
'--'+parm.name, type=float, default=parm.value,
help=parm.name+' to inject'
)
def process_args(args):
"""Process the input args."""
if args.texture is Texture.NONE:
raise ValueError('Must assume a BSM texture')
args.source_ratio = fr_utils.normalize_fr(args.source_ratio)
args.binning = np.logspace(
np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
)
def parse_args(args=None):
"""Parse command line arguments"""
parser = argparse.ArgumentParser(
description="BSM flavor ratio analysis",
formatter_class=misc_utils.SortingHelpFormatter,
)
parser.add_argument(
'--seed', type=misc_utils.seed_parse, default='25',
help='Set the random seed value'
)
parser.add_argument(
'--threads', type=misc_utils.thread_type, default='1',
help='Set the number of threads to use (int or "max")'
)
parser.add_argument(
'--spectral-index', type=float, default='-2',
help='Astro spectral index'
)
parser.add_argument(
'--datadir', type=str, default='./untitled',
help='Path to store chains'
)
fr_utils.fr_argparse(parser)
mcmc_utils.mcmc_argparse(parser)
nuisance_argparse(parser)
misc_utils.remove_option(parser, 'injected_ratio')
misc_utils.remove_option(parser, 'plot_angles')
misc_utils.remove_option(parser, 'plot_elements')
if args is None: return parser.parse_args()
else: return parser.parse_args(args.split())
def gen_identifier(args):
f = '_DIM{0}'.format(args.dimension)
f += '_SRC_' + misc_utils.solve_ratio(args.source_ratio)
f += '_{0}'.format(misc_utils.str_enum(args.texture))
return f
def triangle_llh(theta, args, llh_paramset):
"""Log likelihood function for a given theta."""
if len(theta) != len(llh_paramset):
raise AssertionError(
'Dimensions of scan is not the same as the input '
'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
)
for idx, param in enumerate(llh_paramset):
param.value = theta[idx]
return 1. # Flat LLH
def ln_prob(theta, args, llh_paramset):
dc_llh_paramset = deepcopy(llh_paramset)
lp = llh_utils.lnprior(theta, paramset=dc_llh_paramset)
if not np.isfinite(lp):
return -np.inf
return lp + triangle_llh(
theta,
args = args,
llh_paramset = dc_llh_paramset,
)
def main():
args = parse_args()
process_args(args)
misc_utils.print_args(args)
if args.seed is not None:
np.random.seed(args.seed)
asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
prefix = ''
outfile = args.datadir + '/mc_texture' + prefix + gen_identifier(args)
print('== {0:<25} = {1}'.format('outfile', outfile))
print('asimov_paramset', asimov_paramset)
print('llh_paramset', llh_paramset)
if args.run_mcmc:
ln_prob_eval = partial(
ln_prob,
llh_paramset = llh_paramset,
args = args,
)
if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
p0 = mcmc_utils.flat_seed(
llh_paramset, nwalkers=args.nwalkers
)
elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
p0 = mcmc_utils.gaussian_seed(
llh_paramset, nwalkers=args.nwalkers
)
samples = mcmc_utils.mcmc(
p0 = p0,
ln_prob = ln_prob_eval,
ndim = len(llh_paramset),
nwalkers = args.nwalkers,
burnin = args.burnin,
nsteps = args.nsteps,
threads = args.threads
)
frs = np.array(
map(lambda x: fr_utils.flux_averaged_BSMu(
x, args, args.spectral_index, llh_paramset
), samples),
dtype=float
)
frs_scale = np.vstack((frs.T, samples[:-1].T)).T
mcmc_utils.save_chains(frs_scale, outfile)
print("DONE!")
main.__doc__ = __doc__
if __name__ == '__main__':
main()
|