aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/sens.py
blob: 963a33bc18243a0ec2261ba44c520d7edf38123c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#! /usr/bin/env python
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : March 17, 2018

"""
HESE BSM flavour ratio analysis script
"""

from __future__ import absolute_import, division

import os
import argparse
from functools import partial

import glob

import numpy as np
import numpy.ma as ma
from scipy.optimize import minimize

from utils import fr as fr_utils
from utils import gf as gf_utils
from utils import llh as llh_utils
from utils import misc as misc_utils
from utils import mn as mn_utils
from utils.enums import str_enum
from utils.enums import DataType, Likelihood, ParamTag
from utils.enums import PriorsCateg, StatCateg, Texture
from utils.param import Param, ParamSet


def define_nuisance():
    """Define the nuisance parameters."""
    tag = ParamTag.SM_ANGLES
    nuisance = []
    g_prior = PriorsCateg.GAUSSIAN
    lg_prior = PriorsCateg.LIMITEDGAUSS
    e = 1e-9
    nuisance.extend([
        Param(name='s_12_2', value=0.307,            seed=[0.26, 0.35],     ranges=[0., 1.],      std=0.013,   tex=r's_{12}^2', prior=lg_prior,  tag=tag),
        Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961],   ranges=[0., 1.],      std=0.00147, tex=r'c_{13}^4', prior=lg_prior,  tag=tag),
        Param(name='s_23_2', value=0.538,            seed=[0.31, 0.75],     ranges=[0., 1.],      std=0.069,   tex=r's_{23}^2', prior=lg_prior,  tag=tag),
        Param(name='dcp',    value=4.08404,          seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0,     tex=r'\delta_{CP}', tag=tag),
        Param(
            name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
            std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
        ),
        Param(
            name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
            std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
        )
    ])
    tag = ParamTag.NUISANCE
    nuisance.extend([
        Param(name='convNorm',        value=1.,  seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
        Param(name='promptNorm',      value=0.,  seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
        Param(name='muonNorm',        value=1.,  seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
        Param(name='astroNorm',       value=8.0, seed=[0.,  5. ], ranges=[0. , 20.], std=1.5, tag=tag),
        Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
    ])
    return ParamSet(nuisance)


def get_paramsets(args, nuisance_paramset):
    """Make the paramsets for generating the Asmimov MC sample and also running
    the MCMC.
    """
    asimov_paramset = []
    llh_paramset = []

    gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]

    llh_paramset.extend(
        [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
    )
    llh_paramset.extend(gf_nuisance)

    for parm in llh_paramset:
        parm.value = args.__getattribute__(parm.name)

    boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
    tag = ParamTag.SCALE
    llh_paramset.append(
        Param(
            name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
            tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
                misc_utils.get_units(args.dimension)+r'\right )',
            tag=tag
        )
    )
    llh_paramset = ParamSet(llh_paramset)

    tag = ParamTag.BESTFIT
    if args.data is not DataType.REAL:
        flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
    else:
        flavour_angles = fr_utils.fr_to_angles([1, 1, 1])

    asimov_paramset.extend(gf_nuisance)
    asimov_paramset.extend([
        Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
        Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
    ])
    asimov_paramset = ParamSet(asimov_paramset)

    return asimov_paramset, llh_paramset


def nuisance_argparse(parser):
    nuisance = define_nuisance()
    for parm in nuisance:
        parser.add_argument(
            '--'+parm.name, type=float, default=parm.value,
            help=parm.name+' to inject'
        )


def process_args(args):
    """Process the input args."""
    args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
    if args.data is not DataType.REAL:
        args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)

    args.binning = np.logspace(
        np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
    )

    if args.eval_segment.lower() == 'all':
        args.eval_segment = None
    else:
        args.eval_segment = int(args.eval_segment)

    if args.stat_method is StatCateg.BAYESIAN:
        args.likelihood = Likelihood.GOLEMFIT
    elif args.stat_method is StatCateg.FREQUENTIST:
        args.likelihood = Likelihood.GF_FREQ

    if args.texture is Texture.NONE:
        raise ValueError('Must assume a BSM texture')


def parse_args(args=None):
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(
        description="BSM flavour ratio analysis",
        formatter_class=misc_utils.SortingHelpFormatter,
    )
    parser.add_argument(
        '--seed', type=misc_utils.seed_parse, default='25',
        help='Set the random seed value'
    )
    parser.add_argument(
        '--threads', type=misc_utils.thread_type, default='1',
        help='Set the number of threads to use (int or "max")'
    )
    parser.add_argument(
        '--datadir', type=str, default='./untitled',
        help='Path to store chains'
    )
    parser.add_argument(
        '--segments', type=int, default=10,
        help='Number of new physics scales to evaluate'
    )
    parser.add_argument(
        '--eval-segment', type=str, default='all',
        help='Which point to evalaute'
    )
    parser.add_argument(
        '--overwrite', type=misc_utils.parse_bool, default='False',
        help='Overwrite chains'
    )
    fr_utils.fr_argparse(parser)
    gf_utils.gf_argparse(parser)
    llh_utils.llh_argparse(parser)
    mn_utils.mn_argparse(parser)
    nuisance_argparse(parser)
    if args is None: return parser.parse_args()
    else: return parser.parse_args(args.split())


def main():
    args = parse_args()
    process_args(args)
    misc_utils.print_args(args)

    if args.seed is not None:
        np.random.seed(args.seed)

    asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())

    # Scale and BSM mixings will be fixed.
    scale_prm    = llh_paramset.from_tag(ParamTag.SCALE)[0]
    base_mn_pset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)

    # Array of scales to scan over.
    boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
    eval_scales = np.linspace(boundaries[0], boundaries[1], args.segments-1)
    eval_scales = np.concatenate([[-100.], eval_scales])

    # Evaluate just one point (job), or all points.
    if args.eval_segment is None:
        eval_dim = args.segments
    else: eval_dim = 1

    outfile = args.datadir + '/{0}/{1}/fr_stat'.format(
        *map(misc_utils.parse_enum, [args.stat_method, args.data])
    ) + misc_utils.gen_identifier(args)

    if not args.overwrite and os.path.isfile(outfile+'.npy'):
        print 'FILE EXISTS {0}'.format(outfile+'.npy')
        print 'Exiting...'
        return

    # Setup Golemfit.
    if args.run_mn:
        gf_utils.setup_fitter(args, asimov_paramset)

    # Initialise data structure.
    stat_arr = np.full((eval_dim, 2), np.nan)

    for idx_sc, scale in enumerate(eval_scales):
        if args.eval_segment is not None:
            if idx_sc == args.eval_segment:
                outfile += '_scale_{0:.0E}'.format(np.power(10, scale))
            else: continue
        print '|||| SCALE = {0:.0E}'.format(np.power(10, scale))

        if not args.overwrite and os.path.isfile(outfile+'.npy'):
            print 'FILE EXISTS {0}'.format(outfile+'.npy')
            t = np.load(outfile+'.npy')
            if np.any(~np.isfinite(t)):
                print 'nan found, rerunning...'
                pass
            else:
                print 'Exiting...'
                return

        # Lower scale boundary for first (NULL) point and set the scale param.
        reset_range = None
        if scale < scale_prm.ranges[0]:
            reset_range = scale_prm.ranges
            scale_prm.ranges = (scale, scale_prm.ranges[1])
        scale_prm.value = scale

        identifier = 'b{0}_{1}_{2}_sca{3}'.format(
            args.eval_segment, args.segments, str_enum(args.texture), scale
        )
        llh = '{0}'.format(args.likelihood).split('.')[1]
        data = '{0}'.format(args.data).split('.')[1]
        src_string = misc_utils.solve_ratio(args.source_ratio)
        prefix = args.mn_output + '/DIM{0}/{1}/{2}/s{3}/{4}'.format(
            args.dimension, data, llh, src_string, identifier
        )
        try:
            stat = mn_utils.mn_evidence(
                mn_paramset     = base_mn_pset,
                llh_paramset    = llh_paramset,
                asimov_paramset = asimov_paramset,
                args            = args,
                prefix          = prefix
            )
        except:
            print 'Failed run'
            raise
        print '## Evidence = {0}'.format(stat)

        if args.eval_segment is not None:
            stat_arr[0] = np.array([scale, stat])
        else:
            stat_arr[idx_sc] = np.array([scale, stat])

        # Cleanup.
        if reset_range is not None:
            scale_prm.ranges = reset_range

        if args.run_mn and not args.debug:
            try:
                for f in glob.glob(prefix + '*'):
                    print 'cleaning file {0}'.format(f)
                    os.remove(f)
            except:
                print 'got error trying to cleanup, continuing'
                pass

    misc_utils.make_dir(outfile)
    print 'Saving to {0}'.format(outfile+'.npy')
    np.save(outfile+'.npy', stat_arr)


main.__doc__ = __doc__


if __name__ == '__main__':
    main()