aboutsummaryrefslogtreecommitdiffstats
path: root/sens.py
blob: 7049b83291ab6b3a8492408c07656e0d7d734e10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#! /usr/bin/env python
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : March 17, 2018

"""
HESE BSM flavour ratio analysis script
"""

from __future__ import absolute_import, division

import os
import argparse
from functools import partial

import numpy as np
import numpy.ma as ma
from scipy.optimize import minimize

from utils import fr as fr_utils
from utils import gf as gf_utils
from utils import llh as llh_utils
from utils import misc as misc_utils
from utils import plot as plot_utils
from utils.enums import EnergyDependance, Likelihood, MixingScenario, ParamTag
from utils.enums import PriorsCateg, SensitivityCateg, StatCateg
from utils.param import Param, ParamSet, get_paramsets

from utils import mn as mn_utils


def define_nuisance():
    """Define the nuisance parameters."""
    tag = ParamTag.SM_ANGLES
    nuisance = []
    g_prior = PriorsCateg.GAUSSIAN
    lg_prior = PriorsCateg.LIMITEDGAUSS
    e = 1e-9
    nuisance.extend([
        Param(name='s_12_2', value=0.307,            seed=[0.26, 0.35],     ranges=[0., 1.],      std=0.013,   tex=r's_{12}^2', prior=lg_prior,  tag=tag),
        Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961],   ranges=[0., 1.],      std=0.00147, tex=r'c_{13}^4', prior=lg_prior,  tag=tag),
        Param(name='s_23_2', value=0.538,            seed=[0.31, 0.75],     ranges=[0., 1.],      std=0.069,   tex=r's_{23}^2', prior=lg_prior,  tag=tag),
        Param(name='dcp',    value=4.08404,          seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0,     tex=r'\delta_{CP}', tag=tag),
        Param(
            name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
            std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
        ),
        Param(
            name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
            std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
        )
    ])
    tag = ParamTag.NUISANCE
    nuisance.extend([
        Param(name='convNorm',        value=1.,  seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
        Param(name='promptNorm',      value=0.,  seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
        Param(name='muonNorm',        value=1.,  seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
        Param(name='astroNorm',       value=6.9, seed=[0.,  5. ], ranges=[0. , 20.], std=1.5, tag=tag),
        Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
        # Param(name='convNorm',        value=1.,  seed=[0.5, 2. ], ranges=[0. , 50.], std=0.3,  tag=tag),
        # Param(name='promptNorm',      value=0.,  seed=[0. , 6. ], ranges=[0. , 50.], std=0.05, tag=tag),
        # Param(name='muonNorm',        value=1.,  seed=[0.1, 2. ], ranges=[0. , 50.], std=0.1,  tag=tag),
        # Param(name='astroNorm',       value=6.9, seed=[0.1, 10.], ranges=[0. , 50.], std=0.1,  tag=tag),
        # Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1,  tag=tag)
        # Param(name='convNorm',        value=1.,  seed=[0.5, 2. ], ranges=[0.5, 2. ], std=0.3,  tag=tag),
        # Param(name='promptNorm',      value=0.,  seed=[0. , 6. ], ranges=[0. , 6. ], std=0.05, tag=tag),
        # Param(name='muonNorm',        value=1.,  seed=[0.1, 2. ], ranges=[0.1, 2. ], std=0.1,  tag=tag),
        # Param(name='astroNorm',       value=6.9, seed=[0.1, 10.], ranges=[0.1, 10.], std=0.1,  tag=tag),
        # Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[2.4, 3. ], std=0.1,  tag=tag)
    ])
    return ParamSet(nuisance)


def nuisance_argparse(parser):
    nuisance = define_nuisance()
    for parm in nuisance:
        parser.add_argument(
            '--'+parm.name, type=float, default=parm.value,
            help=parm.name+' to inject'
        )


def process_args(args):
    """Process the input args."""
    if args.fix_mixing is not MixingScenario.NONE and args.fix_scale:
        raise NotImplementedError('Fixed mixing and scale not implemented')
    if args.fix_mixing is not MixingScenario.NONE and args.fix_mixing_almost:
        raise NotImplementedError(
            '--fix-mixing and --fix-mixing-almost cannot be used together'
        )
    if args.sens_run and args.fix_scale:
        raise NotImplementedError(
            '--sens-run and --fix-scale cannot be used together'
        )

    args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio)
    if args.fix_source_ratio:
        args.source_ratio = fr_utils.normalise_fr(args.source_ratio)

    if args.energy_dependance is EnergyDependance.SPECTRAL:
        args.binning = np.logspace(
            np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
        )

    if not args.fix_scale:
        args.scale, args.scale_region = fr_utils.estimate_scale(args)

    if args.sens_eval_bin.lower() == 'all':
        args.sens_eval_bin = None
    else:
        args.sens_eval_bin = int(args.sens_eval_bin)

    if args.sens_eval_bin is not None and args.plot_statistic:
        print 'Cannot make plot when specific scale bin is chosen'
        args.plot_statistic = False

    if args.stat_method is StatCateg.FREQUENTIST and \
       args.likelihood is Likelihood.GOLEMFIT:
        args.likelihood = Likelihood.GF_FREQ

    args.burnin = False


def parse_args(args=None):
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(
        description="BSM flavour ratio analysis",
        formatter_class=misc_utils.SortingHelpFormatter,
    )
    parser.add_argument(
        '--seed', type=misc_utils.seed_parse, default='25',
        help='Set the random seed value'
    )
    parser.add_argument(
        '--threads', type=misc_utils.thread_type, default='1',
        help='Set the number of threads to use (int or "max")'
    )
    parser.add_argument(
        '--outfile', type=str, default='./untitled',
        help='Path to output chains'
    )
    parser.add_argument(
        '--sens-run', type=misc_utils.parse_bool, default='True',
        help='Generate sensitivities'
    )
    parser.add_argument(
        '--run-method', default='full',
        type=partial(misc_utils.enum_parse, c=SensitivityCateg),
        choices=SensitivityCateg,
        help='Choose which type of sensivity plot to make'
    )
    parser.add_argument(
        '--stat-method', default='bayesian',
        type=partial(misc_utils.enum_parse, c=StatCateg), choices=StatCateg,
        help='Statistical method to employ'
    )
    parser.add_argument(
        '--sens-bins', type=int, default=10,
        help='Number of bins for the Bayes factor plot'
    )
    parser.add_argument(
        '--sens-eval-bin', type=str, default='all',
        help='Which bin to evalaute for Bayes factor plot'
    )
    parser.add_argument(
        '--plot-statistic', type=misc_utils.parse_bool, default='False',
        help='Plot MultiNest evidence or LLH value'
    )
    fr_utils.fr_argparse(parser)
    gf_utils.gf_argparse(parser)
    llh_utils.likelihood_argparse(parser)
    mn_utils.mn_argparse(parser)
    nuisance_argparse(parser)
    if args is None: return parser.parse_args()
    else: return parser.parse_args(args.split())


def main():
    args = parse_args()
    process_args(args)
    misc_utils.print_args(args)

    if args.seed is not None:
        np.random.seed(args.seed)

    asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())

    scale = llh_paramset.from_tag(ParamTag.SCALE)[0]
    mmangles = llh_paramset.from_tag(ParamTag.MMANGLES)
    if args.run_method is SensitivityCateg.FULL:
        st_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)]
    elif args.run_method in [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.CORR_ANGLE]:
        nscale_pmset = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True)
        st_paramset_arr = [nscale_pmset] * 3
    elif args.run_method in [SensitivityCateg.FIXED_ONE_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]:
        nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
        st_paramset_arr = []
        for x in xrange(3):
            st_paramset_arr.append(
                ParamSet([prms for prms in nscale_pmset
                          if mmangles[x].name != prms.name])
            )

    scan_scales = np.linspace(
        np.log10(args.scale_region[0]), np.log10(args.scale_region[1]), args.sens_bins
    )
    scan_scales = np.concatenate([[-100.], scan_scales])
    # scan_scales = np.array([-100.])

    corr_angles_categ = [SensitivityCateg.CORR_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]
    fixed_angle_categ = [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.FIXED_ONE_ANGLE]

    if args.run_method in corr_angles_categ:
        scan_angles = np.linspace(0+1e-9, 1-1e-9, args.sens_bins)
    else: scan_angles = np.array([0])
    print 'scan_scales', scan_scales
    print 'scan_angles', scan_angles

    if args.sens_eval_bin is None:
        eval_dim = args.sens_bins
    else: eval_dim = 1

    out = args.outfile+'/{0}/{1}/{2}/fr_stat'.format(
        *map(misc_utils.parse_enum, [args.stat_method, args.run_method, args.data])
    ) + misc_utils.gen_identifier(args)
    if args.sens_run:
        if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ]:
            fitter = gf_utils.setup_fitter(args, asimov_paramset)
            if args.stat_method is StatCateg.FREQUENTIST:
                flags, gf_nuisance = gf_utils.fit_flags(llh_paramset)
                llh_paramset = llh_paramset.remove_params(gf_nuisance)
                asimov_paramset = asimov_paramset.remove_params(gf_nuisance)
                st_paramset_arr = [x.remove_params(gf_nuisance)
                                   for x in st_paramset_arr]
                fitter.SetFitParametersFlag(flags)
        else: fitter = None

        if args.run_method is SensitivityCateg.FULL:
            statistic_arr = np.full((eval_dim, 2), np.nan)
        elif args.run_method in fixed_angle_categ:
            statistic_arr = np.full((len(st_paramset_arr), eval_dim, 2), np.nan)
        elif args.run_method in corr_angles_categ:
            statistic_arr = np.full(
                (len(st_paramset_arr), eval_dim, eval_dim, 3), np.nan
            )

        for idx_scen, sens_paramset in enumerate(st_paramset_arr):
            print '|||| SCENARIO = {0}'.format(idx_scen)
            if args.run_method in fixed_angle_categ:
                for x in mmangles: x.value = 0.+1e-9
                if idx_scen == 0 or idx_scen == 2:
                    mmangles[idx_scen].value = np.sin(np.pi/4.)**2
                    """s_12^2 or s_23^2"""
                    mmangles[1].value = 1.
                    """c_13^4"""
                elif idx_scen == 1:
                    mmangles[idx_scen].value = np.cos(np.pi/4.)**4
                    """c_13^4"""

            for idx_an, an in enumerate(scan_angles):
                if args.run_method in corr_angles_categ:
                    for x in mmangles: x.value = 0.+1e-9
                    angle = np.arcsin(np.sqrt(an))/2.
                    if idx_scen == 0 or idx_scen == 2:
                        mmangles[idx_scen].value = np.sin(angle)**2
                        """s_12^2 or s_23^2"""
                        mmangles[1].value = 1.
                        """c_13^4"""
                    elif idx_scen == 1:
                        mmangles[idx_scen].value = np.cos(angle)**4
                        """c_13^4"""

                for idx_sc, sc in enumerate(scan_scales):
                    if args.sens_eval_bin is not None:
                        if args.run_method in corr_angles_categ:
                            index = idx_an*args.sens_bins + idx_sc
                        else: index = idx_sc
                        if index == args.sens_eval_bin:
                            if idx_scen == 0:
                                out += '_scale_{0:.0E}'.format(np.power(10, sc))
                                if args.run_method in corr_angles_categ:
                                    out += '_angle_{0:<04.2}'.format(an)
                        else: continue

                    sc_param = llh_paramset.from_tag(ParamTag.SCALE)[0]
                    if sc < sc_param.ranges[0]:
                        sc_param.ranges = (sc, sc_param.ranges[1])

                    if idx_sc == 0 or args.sens_eval_bin is not None:
                        print '|||| ANGLE = {0:<04.2}'.format(float(an))
                    print '|||| SCALE = {0:.0E}'.format(np.power(10, sc))
                    scale.value = sc
                    if args.stat_method is StatCateg.BAYESIAN:
                        identifier = 'b{0}_{1}_sce{2}_sca{3}_an{4}'.format(
                            args.sens_eval_bin, args.sens_bins, idx_scen, sc, idx_an
                        )
                        try:
                            stat = mn_utils.mn_evidence(
                                mn_paramset     = sens_paramset,
                                llh_paramset    = llh_paramset,
                                asimov_paramset = asimov_paramset,
                                args            = args,
                                fitter          = fitter,
                                identifier      = identifier
                            )
                        except:
                            print 'Failed run, continuing'
                            # raise
                            continue
                        print '## Evidence = {0}'.format(stat)
                    elif args.stat_method is StatCateg.FREQUENTIST:
                        raise NotImplementedError('Still needs testing')
                        def fn(x):
                            # TODO(shivesh): should be seed or ranges?
                            # Force prior ranges to be inside "seed"
                            for el in x:
                                if el < 0 or el > 1: return np.inf
                            pranges = sens_paramset.seeds
                            for i, name in enumerate(sens_paramset.names):
                                llh_paramset[name].value = \
                                    (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0]
                            theta = llh_paramset.values
                            llh = llh_utils.ln_prob(
                                theta=theta, args=args, asimov_paramset=asimov_paramset,
                                llh_paramset=llh_paramset, fitter=fitter
                            )
                            # print 'llh_paramset', llh_paramset
                            # print '-llh', -llh
                            return -llh

                        n_params = len(sens_paramset)
                        bounds = np.dstack([np.zeros(n_params), np.ones(n_params)])[0]
                        x0_arr = np.linspace(0+1e-3, 1-1e-3, 3)
                        stat = -np.inf
                        try:
                            for x0_v in x0_arr:
                                x0 = np.full(n_params, x0_v)
                                # res = minimize(fun=fn, x0=x0, method='Powell', tol=1e-3)
                                res = minimize(fun=fn, x0=x0, method='Nelder-Mead', tol=1e-3)
                                # res = minimize(fun=fn, x0=x0, method='L-BFGS-B', tol=1e-3, bounds=bounds)
                                # res = minimize(fun=fn, x0=x0, method='BFGS', tol=1e-3)
                                s = -fn(res.x)
                                if s > stat:
                                    stat = s
                        except AssertionError:
                            # print 'Failed run, continuing'
                            raise
                            continue
                        print '=== final llh', stat
                    if args.run_method is SensitivityCateg.FULL:
                        statistic_arr[idx_sc] = np.array([sc, stat])
                    elif args.run_method in fixed_angle_categ:
                        if args.sens_eval_bin is not None:
                            statistic_arr[idx_scen][0] = np.array([sc, stat])
                        else:
                            statistic_arr[idx_scen][idx_sc] = np.array([sc, stat])
                    elif args.run_method in corr_angles_categ:
                        if args.sens_eval_bin is not None:
                            statistic_arr[idx_scen][0][0] = np.array([an, sc, stat])
                        else:
                            statistic_arr[idx_scen][idx_an][idx_sc] = np.array([an, sc, stat])

        misc_utils.make_dir(out)
        print 'Saving to {0}'.format(out+'.npy')
        np.save(out+'.npy', statistic_arr)

    if args.plot_statistic:
        print 'Plotting statistic'
        if args.sens_run: raw = statistic_arr
        else: raw = np.load(out+'.npy')
        data = ma.masked_invalid(raw)

        basename = os.path.dirname(out) + '/statrun/' + os.path.basename(out)
        baseoutfile = basename[:5]+basename[5:].replace('data', 'plots')
        if args.run_method is SensitivityCateg.FULL:
            plot_utils.plot_statistic(
                data        = data,
                outfile     = baseoutfile,
                outformat   = ['png'],
                args        = args,
                scale_param = scale
            )
        elif args.run_method in fixed_angle_categ:
            for idx_scen in xrange(len(st_paramset_arr)):
                print '|||| SCENARIO = {0}'.format(idx_scen)
                outfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
                if idx_scen == 0: label = r'$\mathcal{O}_{12}=\pi/4$'
                elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\pi/4$'
                elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\pi/4$'
                plot_utils.plot_statistic(
                    data        = data[idx_scen],
                    outfile     = outfile,
                    outformat   = ['png'],
                    args        = args,
                    scale_param = scale,
                    label       = label
                )
        elif args.run_method in corr_angles_categ:
            for idx_scen in xrange(len(st_paramset_arr)):
                print '|||| SCENARIO = {0}'.format(idx_scen)
                basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
                if idx_scen == 0: label = r'$\mathcal{O}_{12}='
                elif idx_scen == 1: label = r'$\mathcal{O}_{13}='
                elif idx_scen == 2: label = r'$\mathcal{O}_{23}='
                for idx_an, an in enumerate(scan_angles):
                    print '|||| ANGLE = {0:<04.2}'.format(float(an))
                    outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an)
                    _label = label + r'{0:<04.2}$'.format(an)
                    plot_utils.plot_statistic(
                        data        = data[idx_scen][index][:,1:],
                        outfile     = outfile,
                        outformat   = ['png'],
                        args        = args,
                        scale_param = scale,
                        label       = _label
                    )


main.__doc__ = __doc__


if __name__ == '__main__':
    main()