1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#! /usr/bin/env python
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : April 10, 2018
"""
HESE BSM flavour ratio analysis script
"""
from __future__ import absolute_import, division
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import pyplot as plt
from matplotlib import rc
import GolemFitPy as gf
import pymultinest
import fr
from utils import gf as gf_utils
from utils import likelihood as llh_utils
from utils import misc as misc_utils
from utils.enums import Likelihood, ParamTag
from utils.plot import plot_BSM_angles_limit
rc('text', usetex=False)
rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18})
RUN = False
z = 0.
scenarios = [
[np.sin(np.pi/2.)**2, z, z, z],
[z, np.cos(np.pi/2.)**4, z, z],
[z, z, np.sin(np.pi/2.)**2, z],
]
xticks = [r'$\mathcal{O}_{12}$', r'$\mathcal{O}_{13}$', r'$\mathcal{O}_{23}$']
def main():
args = fr.parse_args()
fr.process_args(args)
misc_utils.print_args(args)
bins = 10
asimov_paramset, mcmc_paramset = fr.get_paramsets(args)
sc_range = mcmc_paramset.from_tag(ParamTag.SCALE)[0].ranges
scan_scales = np.linspace(sc_range[0], sc_range[1], bins)
print 'scan_scales', scan_scales
p = mcmc_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True)
n_params = len(p)
prior_ranges = p.seeds
outfile = './sens'
if RUN:
if args.likelihood is Likelihood.GOLEMFIT:
fitter = gf_utils.setup_fitter(args, asimov_paramset)
elif args.likelihood is Likelihood.GAUSSIAN:
fitter = None
def CubePrior(cube, ndim, nparams):
# default are uniform priors
return ;
data = np.zeros((len(scenarios), bins, 2))
mm_angles = mcmc_paramset.from_tag(ParamTag.MMANGLES)
sc_angles = mcmc_paramset.from_tag(ParamTag.SCALE)[0]
for idx, scen in enumerate(scenarios):
scales = []
evidences = []
for yidx, an in enumerate(mm_angles):
an.value = scen[yidx]
for sc in scan_scales:
sc_angles.value = sc
def lnProb(cube, ndim, nparams):
for i in range(ndim):
prange = prior_ranges[i][1] - prior_ranges[i][0]
p[i].value = prange*cube[i] + prior_ranges[i][0]
for name in p.names:
mcmc_paramset[name].value = p[name].value
theta = mcmc_paramset.values
# print 'theta', theta
# print 'mcmc_paramset', mcmc_paramset
return llh_utils.triangle_llh(
theta=theta,
args=args,
asimov_paramset=asimov_paramset,
mcmc_paramset=mcmc_paramset,
fitter=fitter
)
# TODO(shivesh)
prefix = 'mnrun_{0:.0E}'.format(np.power(10, sc)) + '_' + misc_utils.gen_outfile_name(args)[2:]
print 'begin running evidence calculation for {0}'.format(prefix)
result = pymultinest.run(
LogLikelihood=lnProb,
Prior=CubePrior,
n_dims=n_params,
importance_nested_sampling=True,
n_live_points=args.bayes_live_points,
evidence_tolerance=args.bayes_tolerance,
outputfiles_basename=prefix,
resume=False,
verbose=True
)
analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params)
a_lnZ = analyzer.get_stats()['global evidence']
print 'Evidence = {0}'.format(a_lnZ)
scales.append(sc)
evidences.append(a_lnZ)
for i, d in enumerate(evidences):
data[idx][i][0] = scales[i]
data[idx][i][1] = d
np.save(outfile + '.npy', data)
plot_BSM_angles_limit(
infile=outfile+'.npy',
outfile=outfile,
xticks=xticks,
outformat=['png'],
args=args,
bayesian=True
)
main.__doc__ = __doc__
if __name__ == '__main__':
main()
|