1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#! /usr/bin/env python
import os
import numpy as np
full_scan_mfr = [
# (1, 1, 1), (1, 0, 0)
]
fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
(1, 1, 1, 1, 0, 0),
(1, 1, 1, 0, 1, 0),
# (1, 1, 1, 0, 0, 1),
# (1, 1, 0, 1, 2, 0),
# (1, 1, 0, 1, 0, 0),
# (1, 1, 0, 0, 1, 0),
# (1, 0, 0, 1, 0, 0),
# (0, 1, 0, 0, 1, 0),
# (1, 2, 0, 1, 2, 0),
# (1, 2, 0, 0, 1, 0),
]
GLOBAL_PARAMS = {}
# MCMC
GLOBAL_PARAMS.update(dict(
run_mcmc = 'True',
burnin = 250,
nsteps = 1000,
nwalkers = 60,
seed = 25,
mcmc_seed_type = 'uniform'
))
# FR
dimension = [3]
# dimension = [4, 5, 7, 8]
GLOBAL_PARAMS.update(dict(
threads = 1,
binning = '6e4 1e7 20',
no_bsm = 'False',
scale_region = "1E10",
energy_dependance = 'spectral',
spectral_index = -2,
fix_mixing = 'False',
fix_mixing_almost = 'False',
fold_index = 'True'
))
# Likelihood
GLOBAL_PARAMS.update(dict(
likelihood = 'golemfit',
sigma_ratio = '0.01'
))
# GolemFit
GLOBAL_PARAMS.update(dict(
ast = 'p2_0',
data = 'real'
))
# Plot
GLOBAL_PARAMS.update(dict(
plot_angles = 'True',
plot_elements = 'False',
))
outfile = 'dagman_FR_MCMC_{0}.submit'.format(GLOBAL_PARAMS['likelihood'])
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/mcmc_submit.sub'
with open(outfile, 'w') as f:
job_number = 1
for dim in dimension:
print 'dimension', dim
outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/'.format(
GLOBAL_PARAMS['likelihood'], dim
)
for frs in fix_sfr_mfr:
print 'frs', frs
outchains = outchain_head + '/fix_ifr/'
if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
outchains += '{0}/'.format(GLOBAL_PARAMS['data'].lower())
outchains += 'mcmc_chain'
f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, True))
f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
for key in GLOBAL_PARAMS.iterkeys():
f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
job_number += 1
for frs in full_scan_mfr:
print 'frs', frs
outchains = outchain_head + '/full/'
if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
outchains += 'mcmc_chain'
f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
for key in GLOBAL_PARAMS.iterkeys():
f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
job_number += 1
print 'dag file = {0}'.format(outfile)
|