1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
#! /usr/bin/env python
import os
import numpy as np
full_scan_mfr = [
# (1, 1, 1), (1, 2, 0)
]
fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
(1, 1, 1, 1, 0, 0),
(1, 1, 1, 0, 1, 0),
# (1, 1, 1, 0, 0, 1),
# (1, 1, 0, 1, 2, 0),
# (1, 1, 0, 1, 0, 0),
# (1, 1, 0, 0, 1, 0),
# (1, 0, 0, 1, 0, 0),
# (0, 1, 0, 0, 1, 0),
# (1, 2, 0, 1, 2, 0),
# (1, 2, 0, 0, 1, 0),
]
GLOBAL_PARAMS = {}
# Bayes Factor
sens_eval_bin = 'true' # set to 'all' to run normally
GLOBAL_PARAMS.update(dict(
sens_run = 'True',
run_method = 'fixed_angle', # full, fixed_angle, corr_angle
stat_method = 'bayesian',
sens_bins = 10,
seed = None
))
# MultiNest
GLOBAL_PARAMS.update(dict(
mn_live_points = 1000,
# mn_live_points = 500,
# mn_live_points = 300,
# mn_tolerance = 0.1,
mn_tolerance = 0.3,
mn_output = './mnrun'
))
# FR
# dimension = [6]
# dimension = [3, 6]
dimension = [3, 4, 5, 6, 7, 8]
GLOBAL_PARAMS.update(dict(
threads = 1,
binning = '6e4 1e7 20',
no_bsm = 'False',
scale_region = "1E10",
energy_dependance = 'spectral',
spectral_index = -2,
fix_mixing = 'None',
fix_mixing_almost = 'False',
fold_index = 'True',
save_measured_fr = 'False',
output_measured_fr = './frs/'
))
# Likelihood
GLOBAL_PARAMS.update(dict(
likelihood = 'golemfit',
sigma_ratio = '0.01'
))
# GolemFit
GLOBAL_PARAMS.update(dict(
ast = 'p2_0',
data = 'real'
))
# Plot
GLOBAL_PARAMS.update(dict(
plot_statistic = 'True'
))
outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}'.format(
GLOBAL_PARAMS['stat_method'], GLOBAL_PARAMS['run_method'],
GLOBAL_PARAMS['likelihood'], GLOBAL_PARAMS['data']
)
# outfile += '_seed2'
# outfile += '_tol03'
# outfile += '_NULL'
# outfile += '_prior'
# outfile += '_strictprior'
# outfile += '_noprior'
outfile += '.submit'
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/sens_submit.sub'
if sens_eval_bin.lower() != 'all':
if GLOBAL_PARAMS['run_method'].lower() == 'corr_angle':
raise NotImplementedError
sens_runs = GLOBAL_PARAMS['sens_bins']**2
else:
sens_runs = GLOBAL_PARAMS['sens_bins'] + 1
else: sens_runs = 1
with open(outfile, 'w') as f:
job_number = 1
for dim in dimension:
print 'dimension', dim
outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}'.format(
GLOBAL_PARAMS['likelihood'], dim
)
for frs in fix_sfr_mfr:
print 'frs', frs
output = outchain_head + '/fix_ifr/'
if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
# output += 'seed2/'
# output += 'mn_noverlap/'
# output += 'tol_03/'
# output += 'prior/'
# output += 'strictprior/'
# output += 'noprior/'
for r in xrange(sens_runs):
print 'run', r
f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, True))
f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
if sens_eval_bin.lower() != 'all':
f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
else:
f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
for key in GLOBAL_PARAMS.iterkeys():
f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
job_number += 1
# break
# for frs in full_scan_mfr:
# print 'frs', frs
# output = outchain_head + '/full/'
# if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
# output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
# for r in xrange(sens_runs):
# print 'run', r
# f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
# f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
# f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
# f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
# f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
# f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
# f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
# f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
# f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
# if sens_eval_bin.lower() != 'all':
# f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
# else:
# f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
# for key in GLOBAL_PARAMS.iterkeys():
# f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
# f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
# job_number += 1
print 'dag file = {0}'.format(outfile)
|