1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : March 17, 2018
"""
Useful functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
from functools import partial
import numpy as np
from utils.enums import EnergyDependance, MixingScenario
from utils.misc import enum_parse, parse_bool
import mpmath as mp
mp.mp.dps = 100 # Computation precision
# DTYPE = np.float128
# CDTYPE = np.complex256
# PI = np.arccos(DTYPE(-1))
# SQRT = np.sqrt
# COS = np.cos
# SIN = np.sin
# ACOS = np.arccos
# ASIN = np.arcsin
# EXP = np.exp
DTYPE = mp.mpf
CDTYPE = mp.mpc
PI = mp.pi
SQRT = mp.sqrt
COS = mp.cos
SIN = mp.sin
ACOS = mp.acos
ASIN = mp.asin
EXP = mp.exp
MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
"""SM mass eigenvalues"""
def determinant(x):
"""Calculate the determininant of a 3x3 matrix.
Parameters
----------
x : ndarray, shape = (3, 3)
Returns
----------
float determinant
Examples
----------
>>> print determinant(
>>> [[-1.65238188-0.59549718j, 0.27486548-0.18437467j, -1.35524534-0.38542072j],
>>> [-1.07480906+0.29630449j, -0.47808456-0.80316821j, -0.88609356-1.50737308j],
>>> [-0.14924144-0.99230446j, 0.49504234+0.63639805j, 2.29258915-0.36537507j]]
>>> )
(2.7797571563274688+3.0841795325804848j)
"""
return (x[0][0] * (x[1][1] * x[2][2] - x[2][1] * x[1][2])
-x[1][0] * (x[0][1] * x[2][2] - x[2][1] * x[0][2])
+x[2][0] * (x[0][1] * x[1][2] - x[1][1] * x[0][2]))
def angles_to_fr(src_angles):
"""Convert angular projection of the source flavour ratio back into the
flavour ratio.
Parameters
----------
src_angles : list, length = 2
sin(phi)^4 and cos(psi)^2
Returns
----------
flavour ratios (nue, numu, nutau)
Examples
----------
>>> print angles_to_fr((0.3, 0.4))
(0.38340579025361626, 0.16431676725154978, 0.45227744249483393)
"""
sphi4, c2psi = map(DTYPE, src_angles)
psi = (0.5)*ACOS(c2psi)
sphi2 = SQRT(sphi4)
cphi2 = 1. - sphi2
spsi2 = SIN(psi)**2
cspi2 = 1. - spsi2
x = sphi2*cspi2
y = sphi2*spsi2
z = cphi2
return x, y, z
def angles_to_u(bsm_angles):
"""Convert angular projection of the mixing matrix elements back into the
mixing matrix elements.
Parameters
----------
bsm_angles : list, length = 4
sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
Returns
----------
unitary numpy ndarray of shape (3, 3)
Examples
----------
>>> from fr import angles_to_u
>>> print angles_to_u((0.2, 0.3, 0.5, 1.5))
array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
[-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
[ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]])
"""
s12_2, c13_4, s23_2, dcp = map(DTYPE, bsm_angles)
dcp = CDTYPE(dcp)
c12_2 = 1. - s12_2
c13_2 = SQRT(c13_4)
s13_2 = 1. - c13_2
c23_2 = 1. - s23_2
t12 = ASIN(SQRT(s12_2))
t13 = ACOS(SQRT(c13_2))
t23 = ASIN(SQRT(s23_2))
c12 = COS(t12)
s12 = SIN(t12)
c13 = COS(t13)
s13 = SIN(t13)
c23 = COS(t23)
s23 = SIN(t23)
p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=CDTYPE)
p2 = np.array([[c13 , 0 , s13*EXP(-1j*dcp)] , [0 , 1 , 0] , [-s13*EXP(1j*dcp) , 0 , c13]] , dtype=CDTYPE)
p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=CDTYPE)
u = np.dot(np.dot(p1, p2), p3)
return u
def cardano_eqn(ham):
"""Diagonalise the effective Hamiltonian 3x3 matrix into the form
h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015).
Parameters
----------
ham : numpy ndarray of shape (3, 3)
sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
Returns
----------
unitary numpy ndarray of shape (3, 3)
Examples
----------
>>> import numpy as np
>>> from fr import cardano_eqn
>>> ham = np.array(
>>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
>>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
>>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]
>>> )
>>> print cardano_eqn(ham)
array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j],
[ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j],
[-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]])
"""
if np.shape(ham) != (3, 3):
raise ValueError(
'Input matrix should be a square and dimension 3, '
'got\n{0}'.format(ham)
)
a = -np.trace(ham)
b = DTYPE(1)/2 * ((np.trace(ham))**DTYPE(2) - np.trace(np.dot(ham, ham)))
c = -determinant(ham)
Q = (DTYPE(1)/9) * (a**DTYPE(2) - DTYPE(3)*b)
R = (DTYPE(1)/54) * (DTYPE(2)*a**DTYPE(3) - DTYPE(9)*a*b + DTYPE(27)*c)
theta = ACOS(R / SQRT(Q**DTYPE(3)))
E1 = -DTYPE(2) * SQRT(Q) * COS(theta/DTYPE(3)) - (DTYPE(1)/3)*a
E2 = -DTYPE(2) * SQRT(Q) * COS((theta - DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
E3 = -DTYPE(2) * SQRT(Q) * COS((theta + DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2]
A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2]
A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2]
B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0]
B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0]
B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0]
C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0]
C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0]
C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0]
N1 = SQRT(np.abs(A1*B1)**2 + np.abs(A1*C1)**2 + np.abs(B1*C1)**2)
N2 = SQRT(np.abs(A2*B2)**2 + np.abs(A2*C2)**2 + np.abs(B2*C2)**2)
N3 = SQRT(np.abs(A3*B3)**2 + np.abs(A3*C3)**2 + np.abs(B3*C3)**2)
mm = np.array([
[np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3],
[A1*C1 / N1, A2*C2 / N2, A3*C3 / N3],
[A1*B1 / N1, A2*B2 / N2, A3*B3 / N3]
])
return mm
def normalise_fr(fr):
"""Normalise an input flavour combination to a flavour ratio.
Parameters
----------
fr : list, length = 3
flavour combination
Returns
----------
numpy ndarray flavour ratio
Examples
----------
>>> from fr import normalise_fr
>>> print normalise_fr((1, 2, 3))
array([ 0.16666667, 0.33333333, 0.5 ])
"""
return np.array(fr) / float(np.sum(fr))
def estimate_scale(args):
"""Estimate the scale at which new physics will enter."""
try: m_eign = args.m3x_2
except: m_eign = MASS_EIGENVALUES[1]
if hasattr(args, 'scale'):
if args.scale != 0:
scale = args.scale
scale_region = (scale/args.scale_region, scale*args.scale_region)
return scale, scale_region
if args.energy_dependance is EnergyDependance.MONO:
scale = np.power(
10, np.round(np.log10(m_eign/args.energy)) - \
np.log10(args.energy**(args.dimension-3))
)
scale_region = (scale/args.scale_region, scale*args.scale_region)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
lower_s = (m_eign/args.binning[-1]) / (args.binning[-1]**(args.dimension-3))
upper_s = (m_eign/args.binning[0]) / (args.binning[0]**(args.dimension-3))
scale = np.power(10, np.average(np.log10([lower_s, upper_s])))
diff = upper_s / lower_s
scale_region = (lower_s/np.power(10, args.dimension), upper_s*diff*np.power(10, args.dimension))
scale_region = [np.power(10, np.round(np.log10(x))) for x in scale_region]
return scale, scale_region
def fr_argparse(parser):
parser.add_argument(
'--measured-ratio', type=float, nargs=3, default=[1, 1, 1],
help='Set the central value for the measured flavour ratio at IceCube'
)
parser.add_argument(
'--source-ratio', type=float, nargs=3, default=[2, 1, 0],
help='Set the source flavour ratio for the case when you want to fix it'
)
parser.add_argument(
'--no-bsm', type=parse_bool, default='False',
help='Turn off BSM terms'
)
parser.add_argument(
'--dimension', type=int, default=3,
help='Set the new physics dimension to consider'
)
parser.add_argument(
'--energy-dependance', default='spectral', type=partial(enum_parse, c=EnergyDependance),
choices=EnergyDependance,
help='Type of energy dependance to use in the BSM fit'
)
parser.add_argument(
'--spectral-index', default=-2, type=float,
help='Spectral index for spectral energy dependance'
)
parser.add_argument(
'--fold-index', default='True', type=parse_bool,
help='Fold in the spectral index when using GolemFit'
)
parser.add_argument(
'--binning', default=[6e4, 1e7, 20], type=float, nargs=3,
help='Binning for spectral energy dependance'
)
parser.add_argument(
'--fix-source-ratio', type=parse_bool, default='False',
help='Fix the source flavour ratio'
)
parser.add_argument(
'--fix-mixing', type=partial(enum_parse, c=MixingScenario),
default='None', choices=MixingScenario,
help='Fix all mixing parameters to choice of maximal mixing'
)
parser.add_argument(
'--fix-mixing-almost', type=parse_bool, default='False',
help='Fix all mixing parameters except s23'
)
parser.add_argument(
'--fix-scale', type=parse_bool, default='False',
help='Fix the new physics scale'
)
parser.add_argument(
'--scale', type=float, default=0,
help='Set the new physics scale'
)
parser.add_argument(
'--scale-region', type=float, default=1e10,
help='Set the size of the box to scan for the scale'
)
parser.add_argument(
'--energy', type=float, default=1000,
help='Set the energy scale'
)
def fr_to_angles(ratios):
"""Convert from flavour ratio into the angular projection of the flavour
ratios.
Parameters
----------
TODO(shivesh)
"""
fr0, fr1, fr2 = normalise_fr(ratios)
cphi2 = fr2
sphi2 = (1.0 - cphi2)
if sphi2 == 0.:
return (0., 0.)
else:
spsi2 = fr1 / sphi2
cpsi2 = fr0 / sphi2
sphi4 = sphi2**2
c2psi = COS(ACOS(SQRT(cpsi2))*2)
return map(float, (sphi4, c2psi))
NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)"""
def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
sm_u=NUFIT_U, no_bsm=False, fix_mixing=MixingScenario.NONE,
fix_mixing_almost=False, fix_scale=False, scale=None,
check_uni=True, epsilon=1e-7):
"""Construct the BSM mixing matrix from the BSM parameters.
Parameters
----------
theta : list, length > 3
BSM parameters
dim : int
Dimension of BSM physics
energy : float
Energy in GeV
mass_eigenvalues : list, length = 2
SM mass eigenvalues
sm_u : numpy ndarray, dimension 3
SM mixing matrix
no_bsm : bool
Turn off BSM behaviour
fix_mixing : MixingScenario
Fix the BSM mixing angles
fix_mixing_almost : bool
Fix the BSM mixing angles except one
fix_scale : bool
Fix the BSM scale
scale : float
Used with fix_scale - scale at which to fix
check_uni : bool
Check the resulting BSM mixing matrix is unitary
Returns
----------
unitary numpy ndarray of shape (3, 3)
Examples
----------
>>> from fr import params_to_BSMu
>>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)
array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j],
[-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j],
[-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])
"""
if np.shape(sm_u) != (3, 3):
raise ValueError(
'Input matrix should be a square and dimension 3, '
'got\n{0}'.format(sm_u)
)
if fix_mixing is not MixingScenario.NONE and fix_mixing_almost:
raise NotImplementedError(
'--fix-mixing and --fix-mixing-almost cannot be used together'
)
if not isinstance(theta, (list, tuple)):
theta = [theta]
if fix_mixing is MixingScenario.T12:
s12_2, c13_4, s23_2, dcp, sc2 = 0.5, 1.0, 0.0, 0., theta
elif fix_mixing is MixingScenario.T13:
s12_2, c13_4, s23_2, dcp, sc2 = 0.0, 0.25, 0.0, 0., theta
elif fix_mixing is MixingScenario.T23:
s12_2, c13_4, s23_2, dcp, sc2 = 0.0, 1.0, 0.5, 0., theta
elif fix_mixing_almost:
s12_2, c13_4, dcp = 0.5, 1.0-1E-6, 0.
s23_2, sc2 = theta
elif fix_scale:
s12_2, c13_4, s23_2, dcp = theta
sc2 = scale
else:
s12_2, c13_4, s23_2, dcp, sc2 = theta
if len(theta) != 0:
sc2 = np.power(10., sc2)
else:
sc2 = scale
sc1 = sc2 / 100.
mass_matrix = np.array(
[[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
)
sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T))
if no_bsm:
eg_vector = cardano_eqn(sm_ham)
else:
new_physics_u = angles_to_u((s12_2, c13_4, s23_2, dcp))
scale_matrix = np.array(
[[0, 0, 0], [0, sc1, 0], [0, 0, sc2]]
)
bsm_term = (energy**(dim-3)) * np.dot(new_physics_u, np.dot(scale_matrix, new_physics_u.conj().T))
bsm_ham = sm_ham + bsm_term
eg_vector = cardano_eqn(bsm_ham)
if check_uni:
test_unitarity(eg_vector, rse=True, epsilon=epsilon)
return eg_vector
def test_unitarity(x, prnt=False, rse=False, epsilon=None):
"""Test the unitarity of a matrix.
Parameters
----------
x : numpy ndarray
Matrix to evaluate
prnt : bool
Print the result
rse : bool
Raise Assertion if matrix is not unitary
Returns
----------
numpy ndarray
Examples
----------
>>> from fr import test_unitarity
>>> x = np.identity(3)
>>> print test_unitarity(x)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
"""
f = np.abs(np.dot(x, x.conj().T), dtype=DTYPE)
if prnt:
print 'Unitarity test:\n{0}'.format(f)
if rse:
if not np.abs(np.trace(f) - 3.) < epsilon or \
not np.abs(np.sum(f) - 3.) < epsilon:
raise AssertionError(
'Matrix is not unitary!\nx\n{0}\ntest '
'u\n{1}'.format(x, f)
)
return f
def u_to_fr(source_fr, matrix):
"""Compute the observed flavour ratio assuming decoherence.
Parameters
----------
source_fr : list, length = 3
Source flavour ratio components
matrix : numpy ndarray, dimension 3
Mixing matrix
Returns
----------
Measured flavour ratio
Examples
----------
>>> from fr import params_to_BSMu, u_to_fr
>>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))
array([ 0.33740075, 0.33176584, 0.33083341])
"""
try:
composition = np.einsum(
'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
)
except:
matrix = np.array(matrix, dtype=np.complex256)
composition = np.einsum(
'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
)
pass
ratio = composition / np.sum(source_fr)
return ratio
|