aboutsummaryrefslogtreecommitdiffstats
path: root/utils/fr.py
blob: ddcb5d249d2f9bff9b53a607dba7e3c75150dad1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : March 17, 2018

"""
Useful functions for the BSM flavour ratio analysis
"""

from __future__ import absolute_import, division

import sys

import numpy as np
from scipy import linalg


MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
"""SM mass eigenvalues"""


def angles_to_fr(src_angles):
    """Convert angular projection of the source flavour ratio back into the
    flavour ratio.

    Parameters
    ----------
    src_angles : list, length = 2
        sin(phi)^4 and cos(psi)^2

    Returns
    ----------
    flavour ratios (nue, numu, nutau)

    Examples
    ----------
    >>> print angles_to_fr((0.3, 0.4))
    (0.38340579025361626, 0.16431676725154978, 0.45227744249483393)

    """
    sphi4, c2psi = src_angles

    psi = (0.5)*np.arccos(c2psi)

    sphi2 = np.sqrt(sphi4)
    cphi2 = 1. - sphi2
    spsi2 = np.sin(psi)**2
    cspi2 = 1. - spsi2

    x = sphi2*cspi2
    y = sphi2*spsi2
    z = cphi2
    return x, y, z


def angles_to_u(bsm_angles):
    """Convert angular projection of the mixing matrix elements back into the
    mixing matrix elements.

    Parameters
    ----------
    bsm_angles : list, length = 4
        sin(12)^2, cos(13)^4, sin(23)^2 and deltacp

    Returns
    ----------
    unitary numpy ndarray of shape (3, 3)

    Examples
    ----------
    >>> from fr import angles_to_u
    >>> print angles_to_u((0.2, 0.3, 0.5, 1.5))
    array([[ 0.66195018+0.j        ,  0.33097509+0.j        ,  0.04757188-0.6708311j ],
           [-0.34631487-0.42427084j,  0.61741198-0.21213542j,  0.52331757+0.j        ],
           [ 0.28614067-0.42427084j, -0.64749908-0.21213542j,  0.52331757+0.j        ]])

    """
    s12_2, c13_4, s23_2, dcp = bsm_angles
    dcp = np.complex128(dcp)

    c12_2 = 1. - s12_2
    c13_2 = np.sqrt(c13_4)
    s13_2 = 1. - c13_2
    c23_2 = 1. - s23_2

    t12 = np.arcsin(np.sqrt(s12_2))
    t13 = np.arccos(np.sqrt(c13_2))
    t23 = np.arcsin(np.sqrt(s23_2))

    c12 = np.cos(t12)
    s12 = np.sin(t12)
    c13 = np.cos(t13)
    s13 = np.sin(t13)
    c23 = np.cos(t23)
    s23 = np.sin(t23)

    p1 = np.array([[1   , 0   , 0]                   , [0    , c23 , s23] , [0                   , -s23 , c23]] , dtype=np.complex128)
    p2 = np.array([[c13 , 0   , s13*np.exp(-1j*dcp)] , [0    , 1   , 0]   , [-s13*np.exp(1j*dcp) , 0    , c13]] , dtype=np.complex128)
    p3 = np.array([[c12 , s12 , 0]                   , [-s12 , c12 , 0]   , [0                   , 0    , 1]]   , dtype=np.complex128)

    u = np.dot(np.dot(p1, p2), p3)
    return u


def cardano_eqn(ham):
    """Diagonalise the effective Hamiltonian 3x3 matrix into the form
    h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015).

    Parameters
    ----------
    ham : numpy ndarray of shape (3, 3)
        sin(12)^2, cos(13)^4, sin(23)^2 and deltacp

    Returns
    ----------
    unitary numpy ndarray of shape (3, 3)

    Examples
    ----------
    >>> import numpy as np
    >>> from fr import cardano_eqn
    >>> ham = np.array(
    >>>     [[ 0.66195018+0.j        ,  0.33097509+0.j        ,  0.04757188-0.6708311j ],
    >>>      [-0.34631487-0.42427084j,  0.61741198-0.21213542j,  0.52331757+0.j        ],
    >>>      [ 0.28614067-0.42427084j, -0.64749908-0.21213542j,  0.52331757+0.j        ]]
    >>> )
    >>> print cardano_eqn(ham)
    array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j],
           [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j],
           [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]])

    """
    if np.shape(ham) != (3, 3):
        raise ValueError(
            'Input matrix should be a square and dimension 3, '
            'got\n{0}'.format(ham)
        )

    a = -np.trace(ham)
    b = (0.5) * ((np.trace(ham))**2 - np.trace(np.dot(ham, ham)))
    c = -linalg.det(ham)

    Q = (1/9.) * (a**2 - 3*b)
    R = (1/54.) * (2*a**3 - 9*a*b + 27*c)
    theta = np.arccos(R / np.sqrt(Q**3))

    E1 = -2 * np.sqrt(Q) * np.cos(theta/3.) - (1/3.)*a
    E2 = -2 * np.sqrt(Q) * np.cos((theta - 2.*np.pi)/3.) - (1/3.)*a
    E3 = -2 * np.sqrt(Q) * np.cos((theta + 2.*np.pi)/3.) - (1/3.)*a

    A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2]
    A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2]
    A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2]

    B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0]
    B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0]
    B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0]

    C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0]
    C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0]
    C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0]

    N1 = np.sqrt(abs(A1*B1)**2 + abs(A1*C1)**2 + abs(B1*C1)**2)
    N2 = np.sqrt(abs(A2*B2)**2 + abs(A2*C2)**2 + abs(B2*C2)**2)
    N3 = np.sqrt(abs(A3*B3)**2 + abs(A3*C3)**2 + abs(B3*C3)**2)

    mm = np.array([
        [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3],
        [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3],
        [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3]
    ])
    return mm


def normalise_fr(fr):
    """Normalise an input flavour combination to a flavour ratio.

    Parameters
    ----------
    fr : list, length = 3
        flavour combination

    Returns
    ----------
    numpy ndarray flavour ratio

    Examples
    ----------
    >>> from fr import normalise_fr
    >>> print normalise_fr((1, 2, 3))
    array([ 0.16666667,  0.33333333,  0.5       ])

    """
    return np.array(fr) / float(np.sum(fr))


NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)"""


def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
                   nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False,
                   fix_scale=False, scale=None, check_uni=True):
    """Construct the BSM mixing matrix from the BSM parameters.

    Parameters
    ----------
    theta : list, length > 3
        BSM parameters

    dim : int
        Dimension of BSM physics

    energy : float
        Energy in GeV

    mass_eigenvalues : list, length = 2
        SM mass eigenvalues

    nufit_u : numpy ndarray, dimension 3
        SM NuFIT mixing matrix

    no_bsm : bool
        Turn off BSM behaviour

    fix_mixing : bool
        Fix the BSM mixing angles

    fix_scale : bool
        Fix the BSM scale

    scale : float
        Used with fix_scale - scale at which to fix

    check_uni : bool
        Check the resulting BSM mixing matrix is unitary

    Returns
    ----------
    unitary numpy ndarray of shape (3, 3)

    Examples
    ----------
    >>> from fr import params_to_BSMu
    >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)
    array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j],
           [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j],
           [-0.32561308 -3.95946524e-01j,  0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])

    """
    if np.shape(nufit_u) != (3, 3):
        raise ValueError(
            'Input matrix should be a square and dimension 3, '
            'got\n{0}'.format(ham)
        )

    if fix_mixing:
        s12_2, c13_4, s23_2, dcp, sc2 = 0.5, 1.0-1E-6, 0.5, 0., theta
    elif fix_scale:
        s12_2, c13_4, s23_2, dcp = theta
        sc2 = np.log10(scale)
    else:
        s12_2, c13_4, s23_2, dcp, sc2 = theta
    sc2 = np.power(10., sc2)
    sc1 = sc2 / 100.

    mass_matrix = np.array(
        [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
    )
    sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T))
    if no_bsm:
        eg_vector = cardano_eqn(sm_ham)
    else:
        new_physics_u = angles_to_u((s12_2, c13_4, s23_2, dcp))
        scale_matrix = np.array(
            [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]]
        )
        bsm_term = (energy**(dim-3)) * np.dot(new_physics_u, np.dot(scale_matrix, new_physics_u.conj().T))

        bsm_ham = sm_ham + bsm_term
        eg_vector = cardano_eqn(bsm_ham)

    if check_uni:
        tu = test_unitarity(eg_vector)
        if not abs(np.trace(tu) - 3.) < 1e-5 or \
           not abs(np.sum(tu) - 3.) < 1e-5:
            raise AssertionError(
                'Matrix is not unitary!\neg_vector\n{0}\ntest '
                'u\n{1}'.format(eg_vector, tu)
            )
    return eg_vector


def test_unitarity(x, prnt=False):
    """Test the unitarity of a matrix.

    Parameters
    ----------
    x : numpy ndarray
        Matrix to evaluate

    prnt : bool
        Print the result

    Returns
    ----------
    numpy ndarray

    Examples
    ----------
    >>> from fr import test_unitarity
    >>> x = np.identity(3)
    >>> print test_unitarity(x)
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])

    """
    f = abs(np.dot(x, x.conj().T))
    if prnt:
        print 'Unitarity test:\n{0}'.format(f)
    return f


def u_to_fr(source_fr, matrix):
    """Compute the observed flavour ratio assuming decoherence.

    Parameters
    ----------
    source_fr : list, length = 3
        Source flavour ratio components

    matrix : numpy ndarray, dimension 3
        Mixing matrix

    Returns
    ----------
    Measured flavour ratio

    Examples
    ----------
    >>> from fr import params_to_BSMu, u_to_fr
    >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))
        array([ 0.33740075,  0.33176584,  0.33083341])

    """
    # TODO(shivesh): energy dependence
    composition = np.einsum(
        'ai, bi, a -> b', abs(matrix)**2, abs(matrix)**2, source_fr
    )
    ratio = composition / np.sum(source_fr)
    return ratio