1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : April 04, 2018
"""
Likelihood functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
import argparse
from functools import partial
import numpy as np
from scipy.stats import multivariate_normal
import GolemFitPy as gf
from utils import fr as fr_utils
from utils import gf as gf_utils
from utils.enums import EnergyDependance, Likelihood, ParamTag
from utils.misc import enum_parse
def gaussian_llh(fr, fr_bf, sigma):
"""Multivariate gaussian likelihood."""
cov_fr = np.identity(3) * sigma
return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr))
def likelihood_argparse(parser):
parser.add_argument(
'--likelihood', default='gaussian', type=partial(enum_parse, c=Likelihood),
choices=Likelihood, help='likelihood contour'
)
def lnprior(theta, paramset):
"""Priors on theta."""
ranges = paramset.ranges
for value, range in zip(theta, ranges):
if range[0] <= value <= range[1]:
pass
else: return -np.inf
return 0.
def triangle_llh(theta, args, asimov_paramset, mcmc_paramset, fitter):
"""-Log likelihood function for a given theta."""
if len(theta) != len(mcmc_paramset):
raise AssertionError(
'Length of MCMC scan is not the same as the input '
'params\ntheta={0}\nmcmc_paramset]{1}'.format(theta, mcmc_paramset)
)
for idx, param in enumerate(mcmc_paramset):
param.value = theta[idx]
hypo_paramset = asimov_paramset
for param in mcmc_paramset.from_tag(ParamTag.NUISANCE):
hypo_paramset[param.name].value = param.value
if args.energy_dependance is EnergyDependance.SPECTRAL:
bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
bin_width = np.abs(np.diff(args.binning))
if args.fix_source_ratio:
if args.energy_dependance is EnergyDependance.MONO:
source_flux = args.source_ratio
elif args.energy_dependance is EnergyDependance.SPECTRAL:
source_flux = np.array(
[fr * np.power(bin_centers, args.spectral_index)
for fr in args.source_ratio]
).T
else:
if args.energy_dependance is EnergyDependance.MONO:
source_flux = fr_utils.angles_to_fr(
mcmc_paramset.from_tag(ParamTag.SRCANGLES, values=True)
)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
source_flux = np.array(
[fr * np.power(bin_centers, args.spectral_index)
for fr in fr_utils.angles_to_fr(theta[-2:])]
).T
bsm_angles = mcmc_paramset.from_tag(
[ParamTag.SCALE, ParamTag.MMANGLES], values=True
)
if args.energy_dependance is EnergyDependance.MONO:
u = fr_utils.params_to_BSMu(
theta = bsm_angles,
dim = args.dimension,
energy = args.energy,
no_bsm = args.no_bsm,
fix_mixing = args.fix_mixing,
fix_mixing_almost = args.fix_mixing_almost,
fix_scale = args.fix_scale,
scale = args.scale
)
fr = fr_utils.u_to_fr(source_flux, u)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
mf_perbin = []
for i_sf, sf_perbin in enumerate(source_flux):
u = fr_utils.params_to_BSMu(
theta = bsm_angles,
dim = args.dimension,
energy = args.energy,
no_bsm = args.no_bsm,
fix_mixing = args.fix_mixing,
fix_mixing_almost = args.fix_mixing_almost,
fix_scale = args.fix_scale,
scale = args.scale
)
fr = fr_utils.u_to_fr(sf_perbin, u)
mf_perbin.append(fr)
measured_flux = np.array(mf_perbin).T
intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
intergrated_measured_flux
fr = averaged_measured_flux / np.sum(averaged_measured_flux)
flavour_angles = fr_utils.fr_to_angles(fr)
for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
param.value = flavour_angles[idx]
if args.likelihood is Likelihood.FLAT:
return 1.
elif args.likelihood is Likelihood.GAUSSIAN:
fr_bf = args.measured_ratio
return gaussian_llh(fr, fr_bf, args.sigma_ratio)
elif args.likelihood is Likelihood.GOLEMFIT:
return gf_utils.get_llh(fitter, hypo_paramset)
elif args.likelihood is Likelihood.GF_FREQ:
return gf_utils.get_llh_freq(fitter, hypo_paramset)
def ln_prob(theta, args, fitter, asimov_paramset, mcmc_paramset):
lp = lnprior(theta, paramset=mcmc_paramset)
if not np.isfinite(lp):
return -np.inf
return lp + triangle_llh(
theta, args=args, asimov_paramset=asimov_paramset,
mcmc_paramset=mcmc_paramset, fitter=fitter
)
|