aboutsummaryrefslogtreecommitdiffstats
path: root/utils/likelihood.py
blob: f5902000d16c80e8140ad63e94dca6f4e9c31b56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : April 04, 2018

"""
Likelihood functions for the BSM flavour ratio analysis
"""

from __future__ import absolute_import, division

import argparse
from functools import partial

import numpy as np
from scipy.stats import multivariate_normal

import GolemFitPy as gf

from utils import fr as fr_utils
from utils import gf as gf_utils
from utils.enums import Likelihood, ParamTag
from utils.misc import enum_parse


def gaussian_llh(fr, fr_bf, sigma):
    """Multivariate gaussian likelihood."""
    cov_fr = np.identity(3) * sigma
    return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr))


def likelihood_argparse(parser):
    parser.add_argument(
        '--likelihood', default='gaussian', type=partial(enum_parse, c=Likelihood),
        choices=Likelihood, help='likelihood contour'
    )


def lnprior(theta, paramset):
    """Priors on theta."""
    ranges = paramset.ranges
    for value, range in zip(theta, ranges):
        if range[0] <= value <= range[1]:
            pass
        else: return -np.inf
    return 0.


def triangle_llh(theta, args, asimov_paramset, mcmc_paramset, fitter):
    """-Log likelihood function for a given theta."""
    if len(theta) != len(mcmc_paramset):
        raise AssertionError(
            'Length of MCMC scan is not the same as the input '
            'params\ntheta={0}\nmcmc_paramset]{1}'.format(theta, mcmc_paramset)
        )
    for idx, param in enumerate(mcmc_paramset):
        param.value = theta[idx]
    hypo_paramset = asimov_paramset
    for param in mcmc_paramset.from_tag(ParamTag.NUISANCE):
        hypo_paramset[param.name].value = param.value

    if args.energy_dependance is EnergyDependance.SPECTRAL:
        bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
        bin_width = np.abs(np.diff(args.binning))

    if args.fix_source_ratio:
        if args.energy_dependance is EnergyDependance.MONO:
            source_flux = args.source_ratio
        elif args.energy_dependance is EnergyDependance.SPECTRAL:
	    source_flux = np.array(
		[fr * np.power(bin_centers, SPECTRAL_INDEX)
		 for fr in args.source_ratio]
	    ).T
    else:
        if args.energy_dependance is EnergyDependance.MONO:
            source_flux = fr_utils.angles_to_fr(
                mcmc_paramset.from_tag(ParamTag.SRCANGLES, values=True)
            )
        elif args.energy_dependance is EnergyDependance.SPECTRAL:
            source_flux = np.array(
                [fr * np.power(bin_centers, args.spectral_index)
                 for fr in angles_to_fr(theta[-2:])]
            ).T

    bsm_angles = mcmc_paramset.from_tag(
        [ParamTag.SCALE, ParamTag.MMANGLES], values=True
    )

    if args.energy_dependance is EnergyDependance.MONO:
        u = fr_utils.params_to_BSMu(
            theta      = bsm_angles,
            dim        = args.dimension,
            energy     = args.energy,
            no_bsm     = args.no_bsm,
            fix_mixing = args.fix_mixing,
            fix_scale  = args.fix_scale,
            scale      = args.scale
        )
        fr = fr_utils.u_to_fr(source_flux, u)
    elif args.energy_dependance is EnergyDependance.SPECTRAL:
        mf_perbin = []
        for i_sf, sf_perbin in enumerate(source_flux):
            u = fr_utils.params_to_BSMu(
                theta      = bsm_angles,
                dim        = args.dimension,
                energy     = args.energy,
                no_bsm     = args.no_bsm,
                fix_mixing = args.fix_mixing,
                fix_scale  = args.fix_scale,
                scale      = args.scale
            )
            fr = fr_utils.u_to_fr(sf_perbin, u)
            mf_perbin.append(fr)
        measured_flux = np.array(mf_perbin).T
        intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
        averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
            intergrated_measured_flux
        fr = averaged_measured_flux / np.sum(averaged_measured_flux)

    for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
        param.value = fr[idx]

    # print 'hypo_paramset', hypo_paramset

    if args.likelihood is Likelihood.FLAT:
        return 1.
    elif args.likelihood is Likelihood.GAUSSIAN:
        fr_bf = args.measured_ratio
        return gaussian_llh(fr, fr_bf, args.sigma_ratio)
    elif args.likelihood is Likelihood.GOLEMFIT:
        return gf_utils.get_llh(fitter, hypo_paramset)

def ln_prob(theta, args, fitter, asimov_paramset, mcmc_paramset):
    lp = lnprior(theta, paramset=mcmc_paramset)
    if not np.isfinite(lp):
        return -np.inf
    return lp + triangle_llh(
        theta, args=args, asimov_paramset=asimov_paramset,
        mcmc_paramset=mcmc_paramset, fitter=fitter
    )