1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : April 04, 2018
"""
Likelihood functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
from functools import partial
import numpy as np
from scipy.stats import multivariate_normal, rv_continuous
from utils import fr as fr_utils
from utils import gf as gf_utils
from utils.enums import EnergyDependance, Likelihood, ParamTag, PriorsCateg
from utils.misc import enum_parse
class Gaussian(rv_continuous):
"""Gaussian for one dimension."""
def _pdf(self, x, mu, sig):
return (1./np.sqrt(2*np.pi*sig**2))*np.exp(-((x-mu)**2)/(2*sig**2))
def multi_gaussian(fr, fr_bf, sigma, offset=-320):
"""Multivariate gaussian likelihood."""
cov_fr = np.identity(3) * sigma
return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset
def likelihood_argparse(parser):
parser.add_argument(
'--likelihood', default='gaussian', type=partial(enum_parse, c=Likelihood),
choices=Likelihood, help='likelihood contour'
)
parser.add_argument(
'--sigma-ratio', type=float, default=0.01,
help='Set the 1 sigma for the measured flavour ratio for a gaussian LLH'
)
def lnprior(theta, paramset):
"""Priors on theta."""
if len(theta) != len(paramset):
raise AssertionError(
'Length of MCMC scan is not the same as the input '
'params\ntheta={0}\nparamset={1}'.format(theta, paramset)
)
for idx, param in enumerate(paramset):
param.value = theta[idx]
ranges = paramset.ranges
for value, range in zip(theta, ranges):
if range[0] <= value <= range[1]:
pass
else: return -np.inf
prior = 0
for param in paramset:
if param.prior is PriorsCateg.GAUSSIAN:
prior += Gaussian().logpdf(
param.nominal_value, param.value, param.std
)
elif param.prior is PriorsCateg.HALFGAUSS:
prior += Gaussian().logpdf(
param.nominal_value, param.value, param.std
) + Gaussian().logcdf(1, param.value, param.std)
return prior
def triangle_llh(theta, args, asimov_paramset, llh_paramset, fitter):
"""Log likelihood function for a given theta."""
if len(theta) != len(llh_paramset):
raise AssertionError(
'Length of MCMC scan is not the same as the input '
'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
)
for idx, param in enumerate(llh_paramset):
param.value = theta[idx]
hypo_paramset = asimov_paramset
for param in llh_paramset.from_tag(ParamTag.NUISANCE):
hypo_paramset[param.name].value = param.value
if args.energy_dependance is EnergyDependance.SPECTRAL:
bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
bin_width = np.abs(np.diff(args.binning))
if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ] \
and args.fold_index:
args.spectral_index = -hypo_paramset['astroDeltaGamma'].value
if args.fix_source_ratio:
if args.energy_dependance is EnergyDependance.MONO:
source_flux = args.source_ratio
elif args.energy_dependance is EnergyDependance.SPECTRAL:
source_flux = np.array(
[fr * np.power(bin_centers, args.spectral_index)
for fr in args.source_ratio]
).T
else:
if args.energy_dependance is EnergyDependance.MONO:
source_flux = fr_utils.angles_to_fr(
llh_paramset.from_tag(ParamTag.SRCANGLES, values=True)
)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
source_flux = np.array(
[fr * np.power(bin_centers, args.spectral_index)
for fr in fr_utils.angles_to_fr(theta[-2:])]
).T
bsm_angles = llh_paramset.from_tag(
[ParamTag.SCALE, ParamTag.MMANGLES], values=True
)
m_eig_names = ['m21_2', 'm3x_2']
ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp']
if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)):
mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names]
sm_u = fr_utils.angles_to_u(
[x.value for x in llh_paramset if x.name in ma_names]
)
else:
mass_eigenvalues = fr_utils.MASS_EIGENVALUES
sm_u = fr_utils.NUFIT_U
if args.no_bsm:
fr = fr_utils.u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256))
elif args.energy_dependance is EnergyDependance.MONO:
u = fr_utils.params_to_BSMu(
theta = bsm_angles,
dim = args.dimension,
energy = args.energy,
mass_eigenvalues = mass_eigenvalues,
sm_u = sm_u,
no_bsm = args.no_bsm,
fix_mixing = args.fix_mixing,
fix_mixing_almost = args.fix_mixing_almost,
fix_scale = args.fix_scale,
scale = args.scale
)
fr = fr_utils.u_to_fr(source_flux, u)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
mf_perbin = []
for i_sf, sf_perbin in enumerate(source_flux):
u = fr_utils.params_to_BSMu(
theta = bsm_angles,
dim = args.dimension,
energy = bin_centers[i_sf],
mass_eigenvalues = mass_eigenvalues,
sm_u = sm_u,
no_bsm = args.no_bsm,
fix_mixing = args.fix_mixing,
fix_mixing_almost = args.fix_mixing_almost,
fix_scale = args.fix_scale,
scale = args.scale
)
fr = fr_utils.u_to_fr(sf_perbin, u)
mf_perbin.append(fr)
measured_flux = np.array(mf_perbin).T
intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
intergrated_measured_flux
fr = averaged_measured_flux / np.sum(averaged_measured_flux)
flavour_angles = fr_utils.fr_to_angles(fr)
# print 'flavour_angles', map(float, flavour_angles)
for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
param.value = flavour_angles[idx]
if args.likelihood is Likelihood.FLAT:
llh = 1.
elif args.likelihood is Likelihood.GAUSSIAN:
fr_bf = args.measured_ratio
llh = multi_gaussian(fr, fr_bf, args.sigma_ratio)
elif args.likelihood is Likelihood.GOLEMFIT:
llh = gf_utils.get_llh(fitter, hypo_paramset)
elif args.likelihood is Likelihood.GF_FREQ:
llh = gf_utils.get_llh_freq(fitter, hypo_paramset)
return llh
def ln_prob(theta, args, asimov_paramset, llh_paramset, fitter):
lp = lnprior(theta, paramset=llh_paramset)
if not np.isfinite(lp):
return -np.inf
return lp + triangle_llh(
theta, args=args, asimov_paramset=asimov_paramset,
llh_paramset=llh_paramset, fitter=fitter
)
|