aboutsummaryrefslogtreecommitdiffstats
path: root/utils/llh.py
blob: 93587b9fbfba64dfbf7c39fd78e115c83db2cfde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : April 04, 2018

"""
Likelihood functions for the BSM flavour ratio analysis
"""

from __future__ import absolute_import, division

from functools import partial

import numpy as np
import scipy
from scipy.stats import multivariate_normal, truncnorm

from utils import fr as fr_utils
from utils import gf as gf_utils
from utils.enums import Likelihood, ParamTag, PriorsCateg
from utils.misc import enum_parse, gen_identifier, parse_bool


def GaussianBoundedRV(loc=0., sigma=1., lower=-np.inf, upper=np.inf):
    """Normalised gaussian bounded between lower and upper values"""
    low, up = (lower - loc) / sigma, (upper - loc) / sigma
    g = scipy.stats.truncnorm(loc=loc, scale=sigma, a=low, b=up)
    return g


def multi_gaussian(fr, fr_bf, sigma, offset=-320):
    """Multivariate gaussian likelihood."""
    cov_fr = np.identity(3) * sigma
    return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset


def llh_argparse(parser):
    parser.add_argument(
        '--stat-method', default='bayesian',
        type=partial(misc_utils.enum_parse, c=StatCateg), choices=StatCateg,
        help='Statistical method to employ'
    )


def lnprior(theta, paramset):
    """Priors on theta."""
    if len(theta) != len(paramset):
        raise AssertionError(
            'Length of MCMC scan is not the same as the input '
            'params\ntheta={0}\nparamset={1}'.format(theta, paramset)
        )
    for idx, param in enumerate(paramset):
        param.value = theta[idx]
    ranges = paramset.ranges
    for value, range in zip(theta, ranges):
        if range[0] <= value <= range[1]:
            pass
        else: return -np.inf

    prior = 0
    for param in paramset:
        if param.prior is PriorsCateg.GAUSSIAN:
            prior += GaussianBoundedRV(
                loc=param.nominal_value, sigma=param.std
            ).logpdf(param.value)
        elif param.prior is PriorsCateg.LIMITEDGAUSS:
            prior += GaussianBoundedRV(
                loc=param.nominal_value, sigma=param.std,
                lower=param.ranges[0], upper=param.ranges[1]
            ).logpdf(param.value)
    return prior


def triangle_llh(theta, args, asimov_paramset, llh_paramset):
    """Log likelihood function for a given theta."""
    if len(theta) != len(llh_paramset):
        raise AssertionError(
            'Length of MCMC scan is not the same as the input '
            'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
        )
    for idx, param in enumerate(llh_paramset):
        param.value = theta[idx]
    hypo_paramset = asimov_paramset
    for param in llh_paramset.from_tag(ParamTag.NUISANCE):
        hypo_paramset[param.name].value = param.value

    bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
    bin_width = np.abs(np.diff(args.binning))
    spectral_index = -hypo_paramset['astroDeltaGamma'].value

    source_flux = np.array(
        [fr * np.power(bin_centers, spectral_index)
         for fr in args.source_ratio]
    ).T

    bsm_angles = llh_paramset.from_tag(
        [ParamTag.SCALE, ParamTag.MMANGLES], values=True
    )

    m_eig_names = ['m21_2', 'm3x_2']
    ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp']

    if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)):
        mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names]
        sm_u = fr_utils.angles_to_u(
            [x.value for x in llh_paramset if x.name in ma_names]
        )
    else:
        mass_eigenvalues = fr_utils.MASS_EIGENVALUES
        sm_u = fr_utils.NUFIT_U

    if args.no_bsm:
        fr = fr_utils.u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256))
    else:
        mf_perbin = []
        for i_sf, sf_perbin in enumerate(source_flux):
            u = fr_utils.params_to_BSMu(
                theta             = bsm_angles,
                dim               = args.dimension,
                energy            = bin_centers[i_sf],
                mass_eigenvalues  = mass_eigenvalues,
                sm_u              = sm_u,
                no_bsm            = args.no_bsm,
                texture           = args.texture,
            )
            fr = fr_utils.u_to_fr(sf_perbin, u)
            mf_perbin.append(fr)
        measured_flux = np.array(mf_perbin).T
        intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
        averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
            intergrated_measured_flux
        fr = averaged_measured_flux / np.sum(averaged_measured_flux)

    flavour_angles = fr_utils.fr_to_angles(fr)
    # print 'flavour_angles', map(float, flavour_angles)
    for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
        param.value = flavour_angles[idx]

    if args.likelihood is Likelihood.GOLEMFIT:
        llh = gf_utils.get_llh(hypo_paramset)
    elif args.likelihood is Likelihood.GF_FREQ:
        llh = gf_utils.get_llh_freq(hypo_paramset)
    return llh


def ln_prob(theta, args, asimov_paramset, llh_paramset):
    lp = lnprior(theta, paramset=llh_paramset)
    if not np.isfinite(lp):
        return -np.inf
    return lp + triangle_llh(
        theta, args=args, asimov_paramset=asimov_paramset,
        llh_paramset=llh_paramset
    )