1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : March 19, 2018
"""
Plotting functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
import os
import socket
from copy import deepcopy
import numpy as np
import numpy.ma as ma
from scipy.interpolate import splev, splprep
from scipy.ndimage.filters import gaussian_filter
import matplotlib as mpl
import matplotlib.patches as patches
import matplotlib.gridspec as gridspec
mpl.use('Agg')
from matplotlib import rc
from matplotlib import pyplot as plt
from matplotlib.offsetbox import AnchoredText
from matplotlib.lines import Line2D
from matplotlib.patches import Patch
from getdist import plots, mcsamples
import ternary
from ternary.heatmapping import polygon_generator
import shapely.geometry as geometry
from utils.enums import DataType, str_enum
from utils.enums import Likelihood, ParamTag, StatCateg, Texture
from utils.misc import get_units, make_dir, solve_ratio, interval
from utils.fr import angles_to_u, angles_to_fr, SCALE_BOUNDARIES
BAYES_K = 1. # Substantial degree of belief.
# BAYES_K = 3/2. # Strong degree of belief.
# BAYES_K = 2. # Very strong degree of belief
# BAYES_K = 5/2. # Decisive degree of belief
if os.path.isfile('./plot_llh/paper.mplstyle'):
plt.style.use('./plot_llh/paper.mplstyle')
elif os.environ.get('GOLEMSOURCEPATH') is not None:
plt.style.use(os.environ['GOLEMSOURCEPATH']+'/GolemFit/scripts/paper/paper.mplstyle')
if 'submitter' in socket.gethostname():
rc('text', usetex=False)
def gen_figtext(args):
"""Generate the figure text."""
t = ''
t += 'Source flavour ratio = [{0}]'.format(solve_ratio(args.source_ratio))
if args.data in [DataType.ASIMOV, DataType.REALISATION]:
t += '\nIC injected flavour ratio = [{0}]'.format(
solve_ratio(args.injected_ratio)
)
t += '\nDimension = {0}'.format(args.dimension)
return t
def texture_label(x):
if x == Texture.OEU:
return r'$\mathcal{O}_{e\mu}$'
elif x == Texture.OET:
return r'$\mathcal{O}_{e\tau}$'
elif x == Texture.OUT:
return r'$\mathcal{O}_{\mu\tau}$'
else:
raise AssertionError
def plot_Tchain(Tchain, axes_labels, ranges):
"""Plot the Tchain using getdist."""
Tsample = mcsamples.MCSamples(
samples=Tchain, labels=axes_labels, ranges=ranges
)
Tsample.updateSettings({'contours': [0.90, 0.99]})
Tsample.num_bins_2D=500
Tsample.fine_bins_2D=500
Tsample.smooth_scale_2D=0.03
g = plots.getSubplotPlotter()
g.settings.num_plot_contours = 2
g.settings.axes_fontsize = 10
g.settings.figure_legend_frame = False
g.triangle_plot(
[Tsample], filled=True,
)
return g
def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None):
"""Make the triangle plot."""
if hasattr(args, 'plot_elements'):
if not args.plot_angles and not args.plot_elements:
return
elif not args.plot_angles:
return
if not isinstance(infile, np.ndarray):
raw = np.load(infile)
else:
raw = infile
print 'raw.shape', raw.shape
print 'raw', raw
make_dir(outfile), make_dir
if fig_text is None:
fig_text = gen_figtext(args)
axes_labels = llh_paramset.labels
ranges = llh_paramset.ranges
if args.plot_angles:
print "Making triangle plots"
Tchain = raw
g = plot_Tchain(Tchain, axes_labels, ranges)
mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
for i_ax_1, ax_1 in enumerate(g.subplots):
for i_ax_2, ax_2 in enumerate(ax_1):
if i_ax_1 == i_ax_2:
itv = interval(Tchain[:,i_ax_1], percentile=90.)
for l in itv:
ax_2.axvline(l, color='gray', ls='--')
ax_2.set_title(r'${0:.2f}_{{{1:.2f}}}^{{+{2:.2f}}}$'.format(
itv[1], itv[0]-itv[1], itv[2]-itv[1]
), fontsize=10)
# if not args.fix_mixing:
# sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
# itv = interval(Tchain[:,sc_index], percentile=90.)
# mpl.pyplot.figtext(
# 0.5, 0.3, 'Scale 90% Interval = [1E{0}, 1E{1}], Center = '
# '1E{2}'.format(itv[0], itv[2], itv[1])
# )
if args.data is DataType.REAL:
plt.text(0.8, 0.9, 'IceCube Preliminary', color='red', fontsize=15,
ha='center', va='center')
elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
plt.text(0.8, 0.9, 'IceCube Simulation', color='red', fontsize=15,
ha='center', va='center')
for of in outformat:
print 'Saving', outfile+'_angles.'+of
g.export(outfile+'_angles.'+of)
if not hasattr(args, 'plot_elements'):
return
if args.plot_elements:
print "Making triangle plots"
if args.fix_mixing_almost:
raise NotImplementedError
nu_index = llh_paramset.from_tag(ParamTag.NUISANCE, index=True)
fr_index = llh_paramset.from_tag(ParamTag.MMANGLES, index=True)
sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
if not args.fix_source_ratio:
sr_index = llh_paramset.from_tag(ParamTag.SRCANGLES, index=True)
nu_elements = raw[:,nu_index]
fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
sc_elements = raw[:,sc_index]
if not args.fix_source_ratio:
sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
if args.fix_source_ratio:
Tchain = np.column_stack(
[nu_elements, fr_elements, sc_elements]
)
else:
Tchain = np.column_stack(
[nu_elements, fr_elements, sc_elements, sr_elements]
)
trns_ranges = np.array(ranges)[nu_index,].tolist()
trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
if args.fix_mixing is not MixingScenario.NONE:
trns_axes_labels += \
[r'\mid \tilde{U}_{e1} \mid' , r'\mid \tilde{U}_{e2} \mid' , r'\mid \tilde{U}_{e3} \mid' , \
r'\mid \tilde{U}_{\mu1} \mid' , r'\mid \tilde{U}_{\mu2} \mid' , r'\mid \tilde{U}_{\mu3} \mid' , \
r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
trns_ranges += [(0, 1)] * 9
if not args.fix_scale:
trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
trns_ranges += [np.array(ranges)[sc_index].tolist()]
if not args.fix_source_ratio:
trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
trns_ranges += [(0, 1)] * 3
g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)
if args.data is DataType.REAL:
plt.text(0.8, 0.7, 'IceCube Preliminary', color='red', fontsize=15,
ha='center', va='center')
elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
plt.text(0.8, 0.7, 'IceCube Simulation', color='red', fontsize=15,
ha='center', va='center')
mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
for of in outformat:
print 'Saving', outfile+'_elements'+of
g.export(outfile+'_elements.'+of)
def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
"""Make MultiNest factor or LLH value plot."""
print 'Making Statistic plot'
fig_text = gen_figtext(args)
if label is not None: fig_text += '\n' + label
print 'data', data
print 'data.shape', data.shape
scales, statistic = ma.compress_rows(data).T
try:
tck, u = splprep([scales, statistic], s=0)
except:
return
sc, st = splev(np.linspace(0, 1, 10000), tck)
scales_rm = sc[sc >= scales[1]]
statistic_rm = st[sc >= scales[1]]
min_idx = np.argmin(scales)
null = statistic[min_idx]
fig_text += '\nnull lnZ = {0:.2f}'.format(null)
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic_rm - null)
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic_rm - null)
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(np.log10(args.scale_region))
ax.set_xlabel(r'${\mathrm {log}}_{10} \left (\Lambda^{-1}' + \
get_units(args.dimension) +r'\right )$', fontsize=16)
if args.stat_method is StatCateg.BAYESIAN:
ax.set_ylabel(r'log(Bayes Factor)')
elif args.stat_method is StatCateg.FREQUENTIST:
ax.set_ylabel(r'$-2\Delta {\rm LLH}$')
# ymin = np.round(np.min(reduced_ev) - 1.5)
# ymax = np.round(np.max(reduced_ev) + 1.5)
# ax.set_ylim((ymin, ymax))
ax.plot(scales_rm, reduced_ev)
ax.axhline(y=np.log(10**(BAYES_K)), color='red', alpha=1., linewidth=1.3)
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.3, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.3, linewidth=1)
if args.data is DataType.REAL:
fig.text(0.8, 0.14, 'IceCube Preliminary', color='red', fontsize=9,
ha='center', va='center')
elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
fig.text(0.8, 0.14, 'IceCube Simulation', color='red', fontsize=9,
ha='center', va='center')
at = AnchoredText(
fig_text, prop=dict(size=10), frameon=True, loc=4
)
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
make_dir(outfile)
for of in outformat:
print 'Saving as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def plot_sens_full(data, outfile, outformat, args):
print 'Making FULL sensitivity plot'
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
xticks = ['{0}'.format(x) for x in range(np.min(args.dimensions),
np.max(args.dimensions)+1)]
yranges = [np.inf, -np.inf]
legend_handles = []
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(args.dimensions[0]-1, args.dimensions[-1]+1)
ax.set_xticklabels([''] + xticks + [''])
ax.set_xlabel(r'BSM operator dimension ' + r'$d$')
ax.set_ylabel(r'${\rm log}_{10} \left (\Lambda^{-1} / GeV^{-d+4} \right )$')
argsc = deepcopy(args)
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print 'dim', dim
argsc.dimension = dim
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
# fig_text = gen_figtext(argsc)
scales, statistic = data[idim][isrc].T
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
al = scales[reduced_ev > np.log(10**(BAYES_K))] # Strong degree of belief
# al = scales[reduced_ev > 0.4] # Testing
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1} NULL {2}!'.format(
dim, solve_ratio(src), null
)
print 'Reduced EV {0}'.format(reduced_ev)
continue
lim = al[0]
label = '[{0}, {1}, {2}]'.format(*solve_ratio(src))
if lim < yranges[0]: yranges[0] = lim
if lim > yranges[1]: yranges[1] = lim+4
line = plt.Line2D(
(dim-0.1, dim+0.1), (lim, lim), lw=3, color=colour[isrc], label=label
)
ax.add_line(line)
if idim == 0: legend_handles.append(line)
x_offset = isrc*0.05 - 0.05
ax.annotate(
s='', xy=(dim+x_offset, lim), xytext=(dim+x_offset, lim+3),
arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[isrc]}
)
try:
yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
ax.set_ylim(yranges)
except: pass
ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right')
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def plot_table_sens(data, outfile, outformat, args):
print 'Making TABLE sensitivity plot'
argsc = deepcopy(args)
dims = args.dimensions
srcs = args.source_ratios
if args.texture is Texture.NONE:
textures = [Texture.OEU, Texture.OET, Texture.OUT]
else:
textures = [args.texture]
if len(srcs) > 3:
raise NotImplementedError
xlims = (-60, -20)
ylims = (0.5, 1.5)
LV_atmo_90pc_limits = {
3: (2E-24, 1E-1),
4: (2.7E-28, 3.16E-25),
5: (1.5E-32, 1.12E-27),
6: (9.1E-37, 2.82E-30),
7: (3.6E-41, 1.77E-32),
8: (1.4E-45, 1.00E-34)
}
PS = 8.203e-20 # GeV^{-1}
planck_scale = {
5: PS,
6: PS**2,
7: PS**3,
8: PS**4
}
colour = {0:'red', 1:'blue', 2:'green'}
rgb_co = {0:[1,0,0], 1:[0,0,1], 2:[0.0, 0.5019607843137255, 0.0]}
fig = plt.figure(figsize=(8, 6))
gs = gridspec.GridSpec(dims, 1)
gs.update(hspace=0.15)
first_ax = None
legend_log = []
legend_elements = []
for idim, dim in enumerate(dimensions):
print '== dim', dim
argsc.dimension = dim
gs0 = gridspec.GridSpecFromSubplotSpec(
len(textures), 1, subplot_spec=gs[idim], hspace=0
)
for itex, tex in enumerate(textures):
argcs.texture = tex
ylabel = texture_label(texture)
# if angles == 2 and ian == 0: continue
ax = fig.add_subplot(gs0[itex])
if first_ax is None:
first_ax = ax
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.set_yticks([1.])
ax.set_yticklabels([ylabel], fontsize=13)
ax.yaxis.tick_right()
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
ax.get_xaxis().set_visible(False)
# TODO(shivesh): check this
if itex == len(tex) - 2:
ax.spines['bottom'].set_alpha(0.6)
elif itex == len(tex) - 1:
ax.text(
-0.04, ylim[0], '$d = {0}$'.format(dim), fontsize=16,
rotation='90', verticalalignment='center',
transform=ax.transAxes
)
dim_label_flag = False
ax.spines['top'].set_alpha(0.6)
ax.spines['bottom'].set_alpha(0.6)
for isrc, src in enumerate(srcs):
print '== src', src
argsc.source_ratio = src
if dim in planck_scale:
ps = np.log10(planck_scale[dim])
if ps < xlims[0]:
ax.annotate(
s='', xy=(xlims[0], 1), xytext=(xlims[0]+1, 1),
arrowprops={'arrowstyle': '->, head_length=0.2',
'lw': 1, 'color':'purple'}
)
elif ps > xlims[1]:
ax.annotate(
s='', xy=(xlims[1]-1, 1), xytext=(xlims[1], 1),
arrowprops={'arrowstyle': '<-, head_length=0.2',
'lw': 1, 'color':'purple'}
)
else:
ax.axvline(x=ps, color='purple', alpha=1., linewidth=1.5)
scales, statistic = ma.compress_rows(data[idim][isrc][itex]).T
try:
tck, u = splprep([scales, statistic], s=0)
except:
return
sc, st = splev(np.linspace(0, 1, 10000), tck)
scales_rm = sc[sc >= scales[1]]
statistic_rm = st[sc >= scales[1]]
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic_rm - null)
al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic_rm - null)
al = scales_rm[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1}!'.format(dim, src)
continue
if reduced_ev[-1] < np.log(10**(BAYES_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} FRS{1}!'.format(dim, src)
continue
lim = al[0]
print 'limit = {0}'.format(lim)
ax.axvline(x=lim, color=colour[isrc], alpha=1., linewidth=1.5)
ax.add_patch(patches.Rectangle(
(lim, ylim[0]), 100, np.diff(ylim), fill=True, facecolor=colour[isrc],
alpha=0.3, linewidth=0
))
if isrc not in legend_log:
legend_log.append(isrc)
label = '{0} at source'.format(solve_ratio(src))
legend_elements.append(
Patch(facecolor=rgb_co[isrc]+[0.3],
edgecolor=rgb_co[isrc]+[1], label=label)
)
if itex == 2:
LV_lim = np.log10(LV_atmo_90pc_limits[dim])
ax.add_patch(patches.Rectangle(
(LV_lim[1], ylim[0]), LV_lim[0]-LV_lim[1], np.diff(ylim),
fill=False, hatch='\\\\'
))
ax.get_xaxis().set_visible(True)
ax.set_xlabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda^{-1}\:/\:{\rm GeV}^{-d+4})\: ]$',
fontsize=19)
ax.tick_params(axis='x', labelsize=16)
purple = [0.5019607843137255, 0.0, 0.5019607843137255]
legend_elements.append(
Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
)
legend_elements.append(
Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube, Nature.Phy.14,961(2018)')
)
legend = first_ax.legend(
handles=legend_elements, prop=dict(size=11), loc='upper left',
title='Excluded regions', framealpha=1., edgecolor='black',
frameon=True
)
first_ax.set_zorder(10)
plt.setp(legend.get_title(), fontsize='11')
legend.get_frame().set_linestyle('-')
if show_data: ybound = 0.595
else: ybound = 0.73
if args.data is DataType.REAL and show_data:
# fig.text(0.295, 0.684, 'IceCube Preliminary', color='red', fontsize=13,
fig.text(0.278, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
ha='center', va='center', zorder=11)
elif args.data is DataType.REALISATION:
fig.text(0.278, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
ha='center', va='center', zorder=11)
else:
fig.text(0.278, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
ha='center', va='center', zorder=11)
make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def plot_sens_fixed_angle(data, outfile, outformat, args):
print 'Making FIXED_ANGLE sensitivity plot'
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
xticks = [r'$\mathcal{O}_{e\mu}$', r'$\mathcal{O}_{e\tau}$', r'$\mathcal{O}_{\mu\tau}$']
argsc = deepcopy(args)
LV_atmo_90pc_limits = {
3: (2E-24, 1E-1),
4: (2.7E-28, 3.16E-25),
5: (1.5E-32, 1.12E-27),
6: (9.1E-37, 2.82E-30),
7: (3.6E-41, 1.77E-32),
8: (1.4E-45, 1.00E-34)
}
ylims = {
3 : (-28, -22), 4 : (-34, -25), 5 : (-42, -28), 6 : (-48, -33),
7 : (-54, -37), 8 : (-61, -40)
}
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print '= dim', dim
argsc.dimension = dim
# yranges = [np.inf, -np.inf]
legend_handles = []
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(0, len(xticks)+1)
ax.set_xticklabels([''] + xticks + [''], fontsize=16)
ax.set_xlabel(r'BSM operator angle', fontsize=16)
ax.set_ylabel(r'${\mathrm {log}}_{10} \left (\Lambda^{-1}' + \
get_units(dim) +r'\right )$', fontsize=17)
ax.tick_params(axis='y', labelsize=15)
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
print '== src', src
for ian in xrange(len(data[idim][isrc])):
print '=== an', ian
scales, statistic = data[idim][isrc][ian].T
tck, u = splprep([scales, statistic], s=0)
scales, statistic = splev(np.linspace(0, 1, 1000), tck)
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
al = scales[reduced_ev > np.log(10**(BAYES_K))] # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1}!'.format(dim, src)
continue
if reduced_ev[-1] < np.log(10**(BAYES_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} FRS{1}!'.format(dim, src)
continue
arr_len = 1.5
lim = al[0]
print 'limit = {0}'.format(lim)
label = '{0} : {1} : {2}'.format(*solve_ratio(src))
# if lim < yranges[0]: yranges[0] = lim-arr_len
# if lim > yranges[1]: yranges[1] = lim+arr_len+2
# if lim > yranges[1]: yranges[1] = lim
xoff = 0.15
line = plt.Line2D(
(ian+1-xoff, ian+1+xoff), (lim, lim), lw=2.5, color=colour[isrc], label=label
)
ax.add_line(line)
if len(legend_handles) < isrc+1:
legend_handles.append(line)
x_offset = isrc*xoff/2. - xoff/2.
ax.annotate(
s='', xy=(ian+1+x_offset, lim+0.02), xytext=(ian+1+x_offset, lim-arr_len),
arrowprops={'arrowstyle': '<-', 'lw': 1.5, 'color':colour[isrc]}
)
if ian == 2:
lim = np.log10(LV_atmo_90pc_limits[dim][0])
ax.add_patch(patches.Rectangle(
(ian+1-xoff, lim), 2*xoff, 100, fill=True,
facecolor='orange', alpha=0.3, linewidth=1, edgecolor='k'
))
ax.annotate(s='IC atmospheric', xy=(ian+1, lim+0.13),
color='red', rotation=90, fontsize=7,
horizontalalignment='center',
verticalalignment='bottom')
# try:
# yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
# ax.set_ylim(yranges)
# except: pass
ax.set_ylim(ylims[dim])
legend = ax.legend(handles=legend_handles, prop=dict(size=10), loc='lower left',
title=r'$\nu_e:\nu_\mu:\nu_\tau{\rm\:\:at\:\:source}$',
framealpha=1., edgecolor='black')
plt.setp(legend.get_title(), fontsize='10')
legend.get_frame().set_linestyle('-')
an_text = 'Dimension {0}'.format(dim)
at = AnchoredText(
an_text, prop=dict(size=10), frameon=True, loc=2
)
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
fig.text(0.52, 0.8, r'Excluded', color='red', fontsize=16, ha='center',
va='center', fontweight='bold')
# fig.text(0.52, 0.76, r'with strong evidence', color='red', fontsize=11,
# ha='center', va='center')
if args.data is DataType.REAL:
fig.text(0.77, 0.14, 'IceCube Preliminary', color='red', fontsize=10,
ha='center', va='center')
elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
fig.text(0.77, 0.14, 'IceCube Simulation', color='red', fontsize=10,
ha='center', va='center')
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.2, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
out = outfile + '_DIM{0}'.format(dim)
make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
def plot_sens_corr_angle(data, outfile, outformat, args):
print 'Making CORR_ANGLE sensitivity plot'
labels = [r'$sin^2(2\mathcal{O}_{12})$',
r'$sin^2(2\mathcal{O}_{13})$',
r'$sin^2(2\mathcal{O}_{23})$']
argsc = deepcopy(args)
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print '= dim', dim
argsc.dimension = dim
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
fig_text = gen_figtext(argsc)
print '== src', src
for ian in xrange(len(data[idim][isrc])):
print '=== an', ian
d = data[idim][isrc][ian].reshape(
len(data[idim][isrc][ian])**2, 3
)
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_ylim(0, 1)
ax.set_ylabel(labels[ian])
ax.set_xlabel(r'${\rm log}_{10} \left (\Lambda^{-1}'+get_units(dim)+r'\right )$')
xranges = [np.inf, -np.inf]
legend_handles = []
y = d[:,0]
x = d[:,1]
z = d[:,2]
print 'x', x
print 'y', y
print 'z', z
null_idx = np.argmin(x)
null = z[null_idx]
print 'null = {0}, for scale = {1}'.format(null, x[null_idx])
if args.stat_method is StatCateg.BAYESIAN:
z_r = -(z - null)
elif args.stat_method is StatCateg.FREQUENTIST:
z_r = -2*(z - null)
print 'scale', x
print 'reduced ev', z_r
pdat = np.array([x, y, z_r, np.ones(x.shape)]).T
print 'pdat', pdat
pdat_clean = []
for d in pdat:
if not np.any(np.isnan(d)): pdat_clean.append(d)
pdat = np.vstack(pdat_clean)
sort_column = 3
pdat_sorted = pdat[pdat[:,sort_column].argsort()]
uni, c = np.unique(pdat[:,sort_column], return_counts=True)
print uni, c
print len(uni)
print np.unique(c)
n = len(uni)
assert len(np.unique(c)) == 1
c = c[0]
col_array = []
for col in pdat_sorted.T:
col_array.append(col.reshape(n, c))
col_array = np.stack(col_array)
sep_arrays = []
for x_i in xrange(n):
sep_arrays.append(col_array[:,x_i])
print len(sep_arrays)
sep_arrays = sep_arrays[0][:3]
print sep_arrays
if args.stat_method is StatCateg.BAYESIAN:
reduced_pdat_mask = (sep_arrays[2] > np.log(10**(BAYES_K))) # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_pdat_mask = (sep_arrays[2] > 4.61) # 90% CL for 2 DOFS via Wilks
reduced_pdat = sep_arrays.T[reduced_pdat_mask].T
print 'reduced_pdat', reduced_pdat
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
mini, maxi = np.min(x), np.max(x)
ax.set_xlim((mini, maxi))
ax.set_ylim(0, 1)
ax.grid(b=False)
x_v = reduced_pdat[0].round(decimals=4)
y_v = reduced_pdat[1].round(decimals=4)
uniques = np.unique(x_v)
print 'uniques', uniques
if len(uniques) == 1: continue
bw = np.min(np.diff(uniques))
print 'bw', bw
print np.diff(uniques)
uni_x_split = np.split(uniques, np.where(np.diff(uniques) > bw*(1e20))[0] + 1)
print 'len(uni_x_split)', len(uni_x_split)
for uni_x in uni_x_split:
p_x_l, p_y_l = [], []
p_x_u, p_y_u = [], []
for uni in uni_x:
idxes = np.where(x_v == uni)[0]
ymin, ymax = 1, 0
for idx in idxes:
if y_v[idx] < ymin: ymin = y_v[idx]
if y_v[idx] > ymax: ymax = y_v[idx]
p_x_l.append(uni)
p_y_l.append(ymin)
p_x_u.append(uni)
p_y_u.append(ymax)
p_x_l, p_y_l = np.array(p_x_l, dtype=np.float64), np.array(p_y_l, dtype=np.float64)
p_x_u, p_y_u = np.array(list(reversed(p_x_u)), dtype=np.float64), np.array(list(reversed(p_y_u)), dtype=np.float64)
p_x = np.hstack([p_x_l, p_x_u])
p_y = np.hstack([p_y_l, p_y_u])
p_x = np.r_[p_x, p_x[0]]
p_y = np.r_[p_y, p_y[0]]
print 'p_x', p_x
print 'p_y', p_y
try:
tck, u = splprep([p_x, p_y], s=1e-5, per=True)
xi, yi = splev(np.linspace(0, 1, 1000), tck)
except:
xi, yi = p_x, p_y
ax.fill(xi, yi, 'r', edgecolor='r', linewidth=1)
at = AnchoredText(
fig_text, prop=dict(size=10), frameon=True, loc=4
)
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
out = outfile + '_DIM{0}_SRC{1}_AN{2}'.format(dim, isrc, ian)
make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
def cmap_discretize(cmap, N):
colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
colors_rgba = cmap(colors_i)
indices = np.linspace(0, 1., N+1)
cdict = {}
for ki,key in enumerate(('red','green','blue')):
cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ]
# Return colormap object.
return mpl.colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
def get_tax(ax, scale, ax_labels):
ax.set_aspect('equal')
# Boundary and Gridlines
fig, tax = ternary.figure(ax=ax, scale=scale)
# Draw Boundary and Gridlines
tax.boundary(linewidth=2.0)
tax.gridlines(color='grey', multiple=scale/5., linewidth=1.0, alpha=0.4, ls='--')
tax.gridlines(color='grey', multiple=scale/10., linewidth=0.5, alpha=0.4, ls=':')
# Set Axis labels and Title
fontsize = 23
tax.bottom_axis_label(ax_labels[0], fontsize=fontsize+8, position=(0.55, -0.20/2, 0.5), rotation=0)
tax.right_axis_label(ax_labels[1], fontsize=fontsize+8, offset=0.2, rotation=0)
tax.left_axis_label(ax_labels[2], fontsize=fontsize+8, offset=0.2, rotation=0)
# Remove default Matplotlib axis
tax.get_axes().axis('off')
tax.clear_matplotlib_ticks()
# Set ticks
ticks = np.linspace(0, 1, 6)
tax.ticks(ticks=ticks, locations=ticks*scale, axis='blr', linewidth=1,
offset=0.03, fontsize=fontsize, tick_formats='%.1f')
tax.ticks()
tax._redraw_labels()
return tax
def triangle_project(frs, llh, outfile, outformat, args, llh_paramset, fig_text):
print 'Making triangle projection'
fontsize = 23
def alp(x):
y = list(x)
y[-1] = 0.4
return y
cmap = plt.get_cmap('jet', 10)
cmap_g = cmap_discretize(
mpl.colors.LinearSegmentedColormap.from_list(
"", ["lime", "gold", "darkorange"]),
10
)
cmap_b = cmap_discretize(
mpl.colors.LinearSegmentedColormap.from_list(
"", ["blue", "fuchsia", "darkmagenta"]),
10
)
mean = np.mean(llh)
sig = np.std(llh)
max_scale = np.max(llh)
min_scale = np.min(mean-sig)
norm = mpl.colors.Normalize(vmin=min_scale, vmax=max_scale)
colour = map(alp, map(cmap, map(norm, llh)))
# colour = map(alp, map(cmap_g, map(norm, llh)))
# colour = map(alp, map(cmap_b, map(norm, llh)))
# Figure
fig = plt.figure(figsize=(8, 8))
gs = gridspec.GridSpec(1, 2, width_ratios=[40, 1])
gs.update(hspace=0.3, wspace=0.15)
ax = fig.add_subplot(gs[0])
tax = get_tax(ax, scale=1)
# Plot
tax.scatter(frs, marker='o', s=0.1, color=colour)
# Contour TODO(shivesh)
# tax.plot(contour_68_upper, linewidth=2.3, color='grey', zorder=0, alpha=0.6)
# tax.plot(contour_68_lower, linewidth=2.3, color='grey', zorder=0, alpha=0.6)
# tax.plot(contour_90_upper, linewidth=2.3, color='darkgrey', zorder=0, alpha=0.6)
# tax.plot(contour_90_lower, linewidth=2.3, color='darkgrey', zorder=0, alpha=0.6)
# Lines
marker_style = dict(
linestyle=' ', color='darkorange', linewidth=1.2,
markersize=14, zorder=0
)
# Colorbar
ax0 = fig.add_subplot(gs[1])
cb = mpl.colorbar.ColorbarBase(ax0, cmap=cmap, norm=norm,
orientation='vertical')
cb.ax.tick_params(labelsize=fontsize-5)
cb.set_label(r'$LLH$', fontsize=fontsize+5, labelpad=20,
horizontalalignment='center')
make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def heatmap(data, scale, vmin=None, vmax=None, style='triangular'):
for k, v in data.items():
data[k] = np.array(v)
style = style.lower()[0]
if style not in ["t", "h", 'd']:
raise ValueError("Heatmap style must be 'triangular', 'dual-triangular', or 'hexagonal'")
vertices_values = polygon_generator(data, scale, style)
vertices = []
for v, value in vertices_values:
vertices.append(v)
return vertices
def flavour_contour(frs, ax, nbins, coverage, **kwargs):
"""Plot the flavour contour for a specified coverage."""
# Histogram in flavour space
H, b = np.histogramdd(
(frs[:,0], frs[:,1], frs[:,2]),
bins=(nbins+1, nbins+1, nbins+1), range=((0, 1), (0, 1), (0, 1))
)
H = H / np.sum(H)
# 3D smoothing
smoothing = 0.05
H_s = gaussian_filter(H, sigma=smoothing)
# Finding coverage
H_r = np.ravel(H_s)
H_rs = np.argsort(H_r)[::-1]
H_crs = np.cumsum(H_r[H_rs])
thres = np.searchsorted(H_crs, coverage/100.)
mask_r = np.zeros(H_r.shape)
mask_r[H_rs[:thres]] = 1
mask = mask_r.reshape(H_s.shape)
# Get vertices inside covered region
binx = np.linspace(0, 1, nbins+1)
interp_dict = {}
for i in xrange(len(binx)):
for j in xrange(len(binx)):
for k in xrange(len(binx)):
if mask[i][j][k] == 1:
interp_dict[(i, j, k)] = H_s[i, j, k]
vertices = np.array(heatmap(interp_dict, nbins))
points = vertices.reshape((len(vertices)*3, 2))
# Convex full to find points forming exterior bound
pc = geometry.MultiPoint(points)
polygon = pc.convex_hull
ex_cor = np.array(list(polygon.exterior.coords))
# Join points with a spline
tck, u = splprep([ex_cor.T[0], ex_cor.T[1]], s=0., per=1, k=1)
xi, yi = map(np.array, splev(np.linspace(0, 1, 300), tck))
# Spline again to smooth
tck, u = splprep([xi, yi], s=0.4, per=1, k=3)
xi, yi = map(np.array, splev(np.linspace(0, 1, 300), tck))
ev_polygon = np.dstack((xi, yi))[0]
def project_toflavour(p):
"""Convert from cartesian to flavour space."""
x, y = p
b = y / (np.sqrt(3)/2.)
a = x - b/2.
return [a, b, nbins-a-b]
# Remove points interpolated outside flavour triangle
f_ev_polygon = np.array(map(project_toflavour, ev_polygon))
xf, yf, zf = f_ev_polygon.T
mask = np.array((xf < 0) | (yf < 0) | (zf < 0) | (xf > nbins) |
(yf > nbins) | (zf > nbins))
ev_polygon = np.dstack((xi[~mask], yi[~mask]))[0]
# Plot
ax.plot(
ev_polygon.T[0], ev_polygon.T[1], label=r'{0}\%'.format(int(coverage)),
**kwargs
)
ax.scatter(points.T[0], points.T[1], marker='o', s=2, alpha=1, zorder=3,
**kwargs)
def plot_source_ternary(data, outfile, outformat, args):
"""Ternary plot in the source flavour space for each operator texture."""
r_data = np.full((data.shape[0], data.shape[2], data.shape[1], data.shape[3], data.shape[4]), np.nan)
for idim in xrange(data.shape[0]):
for isrc in xrange(data.shape[1]):
for isce in xrange(data.shape[2]):
r_data[idim][isce][isrc] = data[idim][isrc][isce]
r_data = ma.masked_invalid(r_data)
print r_data.shape, 'r_data.shape'
nsrcs = int(len(args.source_ratios) / 3)
for idim, dim in enumerate(args.dimensions):
print '|||| DIM = {0}, {1}'.format(idim, dim)
for isce in xrange(r_data.shape[1]):
print '|||| SCEN = {0}'.format(str_enum(MixingScenario(isce+1)))
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111)
tax = get_tax(ax, scale=nsrcs)
interp_dict = {}
for isrc, src in enumerate(args.source_ratios):
src_sc = tuple(np.array(src)*(nsrcs-1))
print '|||| SRC = {0}'.format(src)
scales, statistic = ma.compress_rows(r_data[idim][isce][isrc]).T
print 'scales', scales
print 'statistic', statistic
try:
tck, u = splprep([scales, statistic], s=0)
except:
interp_dict[src_sc] = -60
continue
# sc, st = splev(np.linspace(0, 1, 10000), tck)
sc, st = splev(np.linspace(0, 1, 20), tck)
scales_rm = sc[sc >= scales[1]]
statistic_rm = st[sc >= scales[1]]
# scales_rm = sc
# statistic_rm = st
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic_rm - null)
print 'reduced_ev', reduced_ev
al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
else:
assert 0
if len(al) == 0:
print 'No points for DIM {0} FRS {1}!'.format(dim, src)
interp_dict[src_sc] = -60
continue
if reduced_ev[-1] < np.log(10**(BAYES_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} FRS{1}!'.format(dim, src)
interp_dict[src_sc] = -60
continue
lim = al[0]
print 'limit = {0}'.format(lim)
interp_dict[src_sc] = lim
print 'interp_dict', interp_dict
print
print 'vertices', heatmap(interp_dict, nsrcs)
print
tax.heatmap(interp_dict, scale=nsrcs, vmin=-60, vmax=-30)
make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'_SCEN{0}.'.format(isce)+of)
fig.savefig(outfile+'_SCEN{0}.'.format(isce)+of, bbox_inches='tight', dpi=150)
print 'nsrcs', nsrcs
assert 0
def plot_x(data, outfile, outformat, args):
"""Limit plot as a function of the source flavour ratio for each operator
texture."""
print 'Making X sensitivity plot'
dims = args.dimensions
srcs = args.source_ratios
x_arr = np.array([i[0] for i in srcs])
if args.texture is Texture.NONE:
textures = [Texture.OEU, Texture.OET, Texture.OUT]
else:
textures = [args.texture]
# Rearrange data structure
r_data = np.full((
data.shape[0], data.shape[2], data.shape[1], data.shape[3], data.shape[4]
), np.nan)
for idim in xrange(data.shape[0]):
for isrc in xrange(data.shape[1]):
for itex in xrange(data.shape[2]):
r_data[idim][itex][isrc] = data[idim][isrc][itex]
r_data = ma.masked_invalid(r_data)
print r_data.shape, 'r_data.shape'
for idim, dim in enumerate(dims):
print '|||| DIM = {0}, {1}'.format(idim, dim)
boundaries = SCALE_BOUNDARIES[dim]
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=12)
ax.set_xlabel(r'$x$', fontsize=18)
ax.set_ylabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda_{d='+str(dim)+r'}^{-1}\:'+get_units(args.dimension)+r')\: ]$', fontsize=12)
ax.set_xlim(0, 1)
ax.set_ylim(boundaries)
for itex, tex in enumerate(textures):
print '|||| TEX = {0}'.format(tex)
lims = np.full(len(srcs), np.nan)
for isrc, src in enumerate(srcs):
x = src[0]
print '|||| X = {0}'.format(x)
scales, statistic = ma.compress_rows(r_data[idim][itex][isrc]).T
print 'scales', scales
print 'statistic', statistic
max_st = np.max(statistic)
if args.stat_method is StatCateg.BAYESIAN:
if (statistic[0] - max_st) > np.log(10**(BAYES_K)):
raise AssertionError('Discovered LV!')
try:
tck, u = splprep([scales, statistic], s=0)
except:
continue
sc, st = splev(np.linspace(0, 1, 10000), tck)
scales_rm = sc[sc >= scales[1]]
statistic_rm = st[sc >= scales[1]]
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic_rm - null)
print 'reduced_ev', reduced_ev
al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
else:
assert 0
if len(al) == 0:
print 'No points for DIM {0} X {1}!'.format(dim, x)
continue
if reduced_ev[-1] < np.log(10**(BAYES_K)) - 0.1:
print 'Peaked contour does not exclude large scales! For ' \
'DIM {0} X {1}!'.format(dim, x)
continue
lim = al[0]
print 'limit = {0}'.format(lim)
lims[isrc] = lim
lims = ma.masked_invalid(lims)
size = np.sum(~lims.mask)
if size == 0: continue
tck, u = splprep([x_arr[~lims.mask], lims[~lims.mask]], s=0, k=1)
x, y = splev(np.linspace(0, 1, 100), tck)
ax.scatter(x_arr, lims, marker='o', s=10, alpha=1, zorder=5)
ax.fill_between(x, y, 0, label=texture_label(tex))
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.3, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.3, linewidth=1)
ax.legend()
make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'_DIM{0}.'.format(dim)+of)
fig.savefig(outfile+'_DIM{0}.'.format(dim)+of, bbox_inches='tight', dpi=150)
|