aboutsummaryrefslogtreecommitdiffstats
path: root/utils/plot.py
blob: 87a6f5cd7bec5d38e0160bde92b473afebcc49ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# author : S. Mandalia
#          s.p.mandalia@qmul.ac.uk
#
# date   : March 19, 2018

"""
Plotting functions for the BSM flavour ratio analysis
"""

from __future__ import absolute_import, division

import argparse

import numpy as np
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import rc

import getdist
from getdist import plots
from getdist import mcsamples

from utils import misc as misc_utils
from utils.enums import Likelihood, ParamTag
from utils.fr import angles_to_u, angles_to_fr

rc('text', usetex=False)
rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18})


def calc_nbins(x):
    n =  (np.max(x) - np.min(x)) / (2 * len(x)**(-1./3) * (np.percentile(x, 75) - np.percentile(x, 25)))
    return np.floor(n)


def most_likely(arr):
    """Return the densest region given a 1D array of data."""
    binning = calc_bins(arr)
    harr = np.histogram(arr, binning)[0]
    return centers(binning)[np.argmax(harr)]


def interval(arr, percentile=68.):
    """Returns the *percentile* shortest interval around the mode."""
    center = most_likely(arr)
    sarr = sorted(arr)
    delta = np.abs(sarr - center)
    curr_low = np.argmin(delta)
    curr_up = curr_low
    npoints = len(sarr)
    while curr_up - curr_low < percentile/100.*npoints:
        if curr_low == 0:
            curr_up += 1
        elif curr_up == npoints-1:
            curr_low -= 1
        elif sarr[curr_up]-sarr[curr_low-1] < sarr[curr_up+1]-sarr[curr_low]:
            curr_low -= 1
        elif sarr[curr_up]-sarr[curr_low-1] > sarr[curr_up+1]-sarr[curr_low]:
            curr_up += 1
        elif (curr_up - curr_low) % 2:
            # they are equal so step half of the time up and down
            curr_low -= 1
        else:
            curr_up += 1
    return sarr[curr_low], center, sarr[curr_up]


def plot_argparse(parser):
    """Arguments for plotting."""
    parser.add_argument(
        '--plot-angles', type=misc_utils.parse_bool, default='True',
        help='Plot MCMC triangle in the angles space'
    )
    parser.add_argument(
        '--plot-elements', type=misc_utils.parse_bool, default='False',
        help='Plot MCMC triangle in the mixing elements space'
    )


def flat_angles_to_u(x):
    """Convert from angles to mixing elements."""
    return abs(angles_to_u(x)).astype(np.float32).flatten().tolist()


def plot_Tchain(Tchain, axes_labels, ranges):
    """Plot the Tchain using getdist."""
    Tsample = mcsamples.MCSamples(
        samples=Tchain, labels=axes_labels, ranges=ranges
    )

    Tsample.updateSettings({'contours': [0.90, 0.99]})
    Tsample.num_bins_2D=500
    Tsample.fine_bins_2D=500
    Tsample.smooth_scale_2D=0.03

    g = plots.getSubplotPlotter()
    g.settings.num_plot_contours = 2
    g.settings.axes_fontsize = 10
    g.settings.figure_legend_frame = False
    g.triangle_plot(
        [Tsample], filled=True,
    )
    return g


def gen_figtext(args):
    """Generate the figure text."""
    t = ''
    mr1, mr2, mr3 = args.measured_ratio
    if args.fix_source_ratio:
        sr1, sr2, sr3 = args.source_ratio
        if args.fix_scale:
            t += 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
                    'observed flavour ratio = [{3:.2f}, {4:.2f}, ' \
                    '{5:.2f}]\nDimension = {7}\nScale = {9}'.format(
                        sr1, sr2, sr3, mr1, mr2, mr3, args.dimension,
                        int(args.energy), args.scale
                    )
        else:
            t += 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
                    'observed flavour ratio = [{3:.2f}, {4:.2f}, ' \
                    '{5:.2f}]\nDimension = {7}'.format(
                        sr1, sr2, sr3, mr1, mr2, mr3, args.dimension,
                        int(args.energy)
                    )
    else:
        if args.fix_scale:
            t += 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
                    '{2:.2f}]\nDimension = {4}\nScale = {6}'.format(
                        mr1, mr2, mr3, args.dimension, int(args.energy),
                        args.scale
                    )
	else:
            t += 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
                    '{2:.2f}]\nDimension = {4}'.format(
                        mr1, mr2, mr3, args.dimension, int(args.energy)
                    )
    if args.likelihood is Likelihood.GAUSSIAN:
        t += '\nSigma = {0:.3f}'.format(args.sigma_ratio)
    if args.energy_dependance is EnergyDependance.SPECTRAL:
        t += '\nSpectral Index = {0}\nBinning = [{7}, {8}] GeV - {9} bins'.format(
            int(args.spectral_index), int(10**args.binning[0]),
            int(10**args.binning[1]), int(args.binning[2])
        )
    elif args.energy_dependance is EnergyDependance.MONO:
        t += '\nEnergy = {0} GeV'.format(args.energy)
    return t


def chainer_plot(infile, outfile, outformat, args, mcmc_paramset):
    """Make the triangle plot."""
    if not args.plot_angles and not args.plot_elements:
        return

    raw = np.load(infile)
    print 'raw.shape', raw.shape

    misc_utils.make_dir(outfile)
    fig_text = gen_figtext(args)

    axes_labels = mcmc_paramset.labels
    ranges = mcmc_paramset.ranges

    if args.plot_angles:
        Tchain = raw
        g = plot_Tchain(Tchain, axes_labels, ranges)

        if args.fix_mixing and args.fix_source_ratio:
            mpl.pyplot.figtext(0.4, 0.7, fig_text, fontsize=4)
        else:
            mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
        for of in outformat:
            g.export(outfile+'_angles.'+of)

    if args.plot_elements:
        nu_index = mcmc_paramset.from_tag(ParamTag.NUISANCE, index=True)
        fr_index = mcmc_paramset.from_tag(ParamTag.MMANGLES, index=True)
        sc_index = mcmc_paramset.from_tag(ParamTag.SCALE, index=True)
        if not args.fix_source_ratio:
            sr_index = mcmc_paramset.from_tag(ParamTag.SRCANGLES, index=True)

        nu_elements = raw[:,nu_index]
        fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
        sc_elements = raw[:,sc_index]
        if not args.fix_source_ratio:
            sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
        if args.fix_source_ratio:
            Tchain = np.column_stack(
                [nu_elements, fr_elements, sc_elements]
            )
        else:
            Tchain = np.column_stack(
                [nu_elements, fr_elements, sc_elements, sr_elements]
            )

        trns_ranges = np.array(ranges)[nu_index,].tolist()
        trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
        if not args.fix_mixing:
            trns_axes_labels += \
                [r'\mid \tilde{U}_{e1} \mid'    , r'\mid \tilde{U}_{e2} \mid'    , r'\mid \tilde{U}_{e3} \mid'     , \
                 r'\mid \tilde{U}_{\mu1} \mid'  , r'\mid \tilde{U}_{\mu2} \mid'  , r'\mid \tilde{U}_{\mu3} \mid'   , \
                 r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
            trns_ranges += [(0, 1)] * 9
        if not args.fix_scale:
            trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
            trns_ranges += [np.array(ranges)[sc_index].tolist()]
        if not args.fix_source_ratio:
            trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
            trns_ranges += [(0, 1)] * 3

        g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)

        if args.fix_mixing and args.fix_source_ratio:
            mpl.pyplot.figtext(0.4, 0.7, fig_text, fontsize=4)
        else:
            mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
        for of in outformat:
            g.export(outfile+'_elements.'+of)