1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
# author : S. Mandalia
# s.p.mandalia@qmul.ac.uk
#
# date : March 19, 2018
"""
Plotting functions for the BSM flavour ratio analysis
"""
from __future__ import absolute_import, division
import os
from copy import deepcopy
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import rc
from matplotlib import pyplot as plt
from matplotlib.offsetbox import AnchoredText
from getdist import plots, mcsamples
from utils import misc as misc_utils
from utils.enums import EnergyDependance, Likelihood, ParamTag, StatCateg
from utils.fr import angles_to_u, angles_to_fr
rc('text', usetex=False)
rc('font', **{'family':'serif', 'serif':['Computer Modern'], 'size':18})
def centers(x):
return (x[:-1]+x[1:])*0.5
def get_units(dimension):
if dimension == 3: return r' / GeV'
if dimension == 4: return r''
if dimension == 5: return r' / GeV^{-1}'
if dimension == 6: return r' / GeV^{-2}'
if dimension == 7: return r' / GeV^{-3}'
if dimension == 8: return r' / GeV^{-4}'
def calc_nbins(x):
n = (np.max(x) - np.min(x)) / (2 * len(x)**(-1./3) * (np.percentile(x, 75) - np.percentile(x, 25)))
return np.floor(n)
def calc_bins(x):
nbins = calc_nbins(x)
return np.linspace(np.min(x), np.max(x)+2, num=nbins+1)
def most_likely(arr):
"""Return the densest region given a 1D array of data."""
binning = calc_bins(arr)
harr = np.histogram(arr, binning)[0]
return centers(binning)[np.argmax(harr)]
def interval(arr, percentile=68.):
"""Returns the *percentile* shortest interval around the mode."""
center = most_likely(arr)
sarr = sorted(arr)
delta = np.abs(sarr - center)
curr_low = np.argmin(delta)
curr_up = curr_low
npoints = len(sarr)
while curr_up - curr_low < percentile/100.*npoints:
if curr_low == 0:
curr_up += 1
elif curr_up == npoints-1:
curr_low -= 1
elif sarr[curr_up]-sarr[curr_low-1] < sarr[curr_up+1]-sarr[curr_low]:
curr_low -= 1
elif sarr[curr_up]-sarr[curr_low-1] > sarr[curr_up+1]-sarr[curr_low]:
curr_up += 1
elif (curr_up - curr_low) % 2:
# they are equal so step half of the time up and down
curr_low -= 1
else:
curr_up += 1
return sarr[curr_low], center, sarr[curr_up]
def flat_angles_to_u(x):
"""Convert from angles to mixing elements."""
return abs(angles_to_u(x)).astype(np.float32).flatten().tolist()
def plot_Tchain(Tchain, axes_labels, ranges):
"""Plot the Tchain using getdist."""
Tsample = mcsamples.MCSamples(
samples=Tchain, labels=axes_labels, ranges=ranges
)
Tsample.updateSettings({'contours': [0.90, 0.99]})
Tsample.num_bins_2D=500
Tsample.fine_bins_2D=500
Tsample.smooth_scale_2D=0.03
g = plots.getSubplotPlotter()
g.settings.num_plot_contours = 2
g.settings.axes_fontsize = 10
g.settings.figure_legend_frame = False
g.triangle_plot(
[Tsample], filled=True,
)
return g
def gen_figtext(args):
"""Generate the figure text."""
t = ''
mr1, mr2, mr3 = misc_utils.solve_ratio(args.measured_ratio)
if args.fix_source_ratio:
sr1, sr2, sr3 = misc_utils.solve_ratio(args.source_ratio)
t += 'Source flavour ratio = [{0}, {1}, {2}]\nIC ' \
'observed flavour ratio = [{3}, {4}, ' \
'{5}]\nDimension = {6}'.format(
sr1, sr2, sr3, mr1, mr2, mr3, args.dimension,
int(args.energy)
)
else:
t += 'IC observed flavour ratio = [{0}, {1}, ' \
'{2}]\nDimension = {3}'.format(
mr1, mr2, mr3, args.dimension, int(args.energy)
)
if args.fix_scale:
t += 'Scale = {0}'.format(args.scale)
if args.likelihood is Likelihood.GAUSSIAN:
t += '\nSigma = {0:.3f}'.format(args.sigma_ratio)
if args.energy_dependance is EnergyDependance.SPECTRAL:
if not args.fold_index:
t += '\nSpectral Index = {0}'.format(int(args.spectral_index))
t += '\nBinning = [{0}, {1}] TeV - {2} bins'.format(
int(args.binning[0]/1e3), int(args.binning[-1]/1e3), len(args.binning)-1
)
elif args.energy_dependance is EnergyDependance.MONO:
t += '\nEnergy = {0} TeV'.format(int(args.energy/1e3))
return t
def chainer_plot(infile, outfile, outformat, args, llh_paramset):
"""Make the triangle plot."""
if not args.plot_angles and not args.plot_elements:
return
raw = np.load(infile)
print 'raw.shape', raw.shape
misc_utils.make_dir(outfile)
fig_text = gen_figtext(args)
axes_labels = llh_paramset.labels
ranges = llh_paramset.ranges
if args.plot_angles:
print "Making triangle plots"
Tchain = raw
g = plot_Tchain(Tchain, axes_labels, ranges)
mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
for i_ax_1, ax_1 in enumerate(g.subplots):
for i_ax_2, ax_2 in enumerate(ax_1):
if i_ax_1 == i_ax_2:
itv = interval(Tchain[:,i_ax_1], percentile=90.)
for l in itv:
ax_2.axvline(l, color='gray', ls='--')
ax_2.set_title(r'${0:.2f}_{{{1:.2f}}}^{{+{2:.2f}}}$'.format(
itv[1], itv[0]-itv[1], itv[2]-itv[1]
), fontsize=10)
# if not args.fix_mixing:
# sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
# itv = interval(Tchain[:,sc_index], percentile=90.)
# mpl.pyplot.figtext(
# 0.5, 0.3, 'Scale 90% Interval = [1E{0}, 1E{1}], Center = '
# '1E{2}'.format(itv[0], itv[2], itv[1])
# )
for of in outformat:
g.export(outfile+'_angles.'+of)
if args.plot_elements:
print "Making triangle plots"
if args.fix_mixing_almost:
raise NotImplementedError
nu_index = llh_paramset.from_tag(ParamTag.NUISANCE, index=True)
fr_index = llh_paramset.from_tag(ParamTag.MMANGLES, index=True)
sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
if not args.fix_source_ratio:
sr_index = llh_paramset.from_tag(ParamTag.SRCANGLES, index=True)
nu_elements = raw[:,nu_index]
fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
sc_elements = raw[:,sc_index]
if not args.fix_source_ratio:
sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
if args.fix_source_ratio:
Tchain = np.column_stack(
[nu_elements, fr_elements, sc_elements]
)
else:
Tchain = np.column_stack(
[nu_elements, fr_elements, sc_elements, sr_elements]
)
trns_ranges = np.array(ranges)[nu_index,].tolist()
trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
if not args.fix_mixing:
trns_axes_labels += \
[r'\mid \tilde{U}_{e1} \mid' , r'\mid \tilde{U}_{e2} \mid' , r'\mid \tilde{U}_{e3} \mid' , \
r'\mid \tilde{U}_{\mu1} \mid' , r'\mid \tilde{U}_{\mu2} \mid' , r'\mid \tilde{U}_{\mu3} \mid' , \
r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
trns_ranges += [(0, 1)] * 9
if not args.fix_scale:
trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
trns_ranges += [np.array(ranges)[sc_index].tolist()]
if not args.fix_source_ratio:
trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
trns_ranges += [(0, 1)] * 3
g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)
mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
for of in outformat:
g.export(outfile+'_elements.'+of)
def myround(x, base=5, up=False, down=False):
if up == down and up is True: assert 0
if up: return int(base * np.round(float(x)/base-0.5))
elif down: return int(base * np.round(float(x)/base+0.5))
else: int(base * np.round(float(x)/base))
def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
"""Make MultiNest factor or LLH value plot."""
print 'Making Statistic plot'
fig_text = gen_figtext(args)
if label is not None: fig_text += '\n' + label
print 'data', data
print 'data.shape', data.shape
scales, statistic = data.T
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(np.log10(args.scale_region))
ax.set_xlabel('$'+scale_param.tex+'$')
if args.stat_method is StatCateg.BAYESIAN:
ax.set_ylabel(r'Bayes Factor')
elif args.stat_method is StatCateg.FREQUENTIST:
ax.set_ylabel(r'$-2\Delta {\rm LLH}$')
ax.plot(scales, reduced_ev)
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.3, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.3, linewidth=1)
at = AnchoredText(
'\n'+fig_text, prop=dict(size=7), frameon=True, loc=2
)
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
misc_utils.make_dir(outfile)
for of in outformat:
print 'Saving as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def plot_sens_full(data, outfile, outformat, args):
print 'Making FULL sensitivity plot'
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
xticks = ['{0}'.format(x) for x in range(np.min(args.dimensions),
np.max(args.dimensions)+1)]
yranges = [np.inf, -np.inf]
legend_handles = []
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(args.dimensions[0]-1, args.dimensions[-1]+1)
ax.set_xticklabels([''] + xticks + [''])
ax.set_xlabel(r'BSM operator dimension ' + r'$d$')
ax.set_ylabel(r'${\rm log}_{10} \Lambda^{-1} / GeV^{-d+4}$')
argsc = deepcopy(args)
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print 'dim', dim
argsc.dimension = dim
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
# fig_text = gen_figtext(argsc)
scales, statistic = data[idim][isrc].T
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
# al = scales[reduced_ev > np.log(10**(3/2.))] # Strong degree of belief
al = scales[reduced_ev > 0.4] # Testing
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1} NULL {2}!'.format(
dim, misc_utils.solve_ratio(src), null
)
print 'Reduced EV {0}'.format(reduced_ev)
continue
lim = al[0]
label = '[{0}, {1}, {2}]'.format(*misc_utils.solve_ratio(src))
if lim < yranges[0]: yranges[0] = lim
if lim > yranges[1]: yranges[1] = lim+4
line = plt.Line2D(
(dim-0.1, dim+0.1), (lim, lim), lw=3, color=colour[isrc], label=label
)
ax.add_line(line)
if idim == 0: legend_handles.append(line)
x_offset = isrc*0.05 - 0.05
ax.annotate(
s='', xy=(dim+x_offset, lim), xytext=(dim+x_offset, lim+3),
arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[isrc]}
)
try:
yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
ax.set_ylim(yranges)
except: pass
ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right')
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
misc_utils.make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
def plot_sens_fixed_angle(data, outfile, outformat, args):
print 'Making FIXED_ANGLE sensitivity plot'
colour = {0:'red', 1:'blue', 2:'green', 3:'purple', 4:'orange', 5:'black'}
xticks = [r'$\mathcal{O}_{12}$', r'$\mathcal{O}_{13}$', r'$\mathcal{O}_{23}$']
argsc = deepcopy(args)
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print '= dim', dim
argsc.dimension = dim
yranges = [np.inf, -np.inf]
legend_handles = []
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_xlim(0, len(xticks)+1)
ax.set_xticklabels([''] + xticks + [''])
ax.set_xlabel(r'BSM operator angle')
ax.set_ylabel(r'${\rm log}_{10} \Lambda^{-1} / GeV^{-d+4}$')
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
print '== src', src
for ian in xrange(len(data[idim][isrc])):
print '=== an', ian
scales, statistic = data[idim][isrc][ian].T
min_idx = np.argmin(scales)
null = statistic[min_idx]
if args.stat_method is StatCateg.BAYESIAN:
reduced_ev = -(statistic - null)
al = scales[reduced_ev > np.log(10**(3/2.))] # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_ev = -2*(statistic - null)
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
print 'reduced_ev', reduced_ev
if len(al) == 0:
print 'No points for DIM {0} FRS {1}\nreduced_ev {2}!'.format(
dim, src, reduced_ev
)
continue
lim = al[0]
print 'limit = {0}'.format(lim)
label = '[{0}, {1}, {2}]'.format(*misc_utils.solve_ratio(src))
if lim < yranges[0]: yranges[0] = lim
if lim > yranges[1]: yranges[1] = lim+4
line = plt.Line2D(
(ian+1-0.1, ian+1+0.1), (lim, lim), lw=3, color=colour[isrc], label=label
)
ax.add_line(line)
if len(legend_handles) < isrc+1:
legend_handles.append(line)
x_offset = isrc*0.05 - 0.05
ax.annotate(
s='', xy=(ian+1+x_offset, lim), xytext=(ian+1+x_offset, lim+3),
arrowprops={'arrowstyle': '<-', 'lw': 1.2, 'color':colour[isrc]}
)
try:
yranges = (myround(yranges[0], up=True), myround(yranges[1], down=True))
ax.set_ylim(yranges)
except: pass
ax.legend(handles=legend_handles, prop=dict(size=8), loc='upper right')
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
out = outfile + '_DIM{0}'.format(dim)
misc_utils.make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.4, linewidth=1)
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
def plot_sens_corr_angle(data, outfile, outformat, args):
print 'Making CORR_ANGLE sensitivity plot'
labels = [r'$sin^2(2\mathcal{O}_{12})$',
r'$sin^2(2\mathcal{O}_{13})$',
r'$sin^2(2\mathcal{O}_{23})$']
argsc = deepcopy(args)
for idim in xrange(len(data)):
dim = args.dimensions[idim]
print '= dim', dim
argsc.dimension = dim
for isrc in xrange(len(data[idim])):
src = args.source_ratios[isrc]
argsc.source_ratio = src
print '== src', src
for ian in xrange(len(data[idim][isrc])):
print '=== an', ian
d = data[idim][isrc][ian].reshape(
len(data[idim][isrc][ian])**2, 3
)
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.set_ylim(0, 1)
ax.set_ylabel(labels[ian])
ax.set_xlabel(r'${\rm log}_{10} \Lambda^{-1}'+get_units(dim)+r'$')
xranges = [np.inf, -np.inf]
legend_handles = []
y = d[:,0]
x = d[:,1]
z = d[:,2]
print 'x', x
print 'y', y
print 'z', z
null_idx = np.argmin(x)
null = z[null_idx]
print 'null = {0}, for scale = {1}'.format(null, x[null_idx])
if args.stat_method is StatCateg.BAYESIAN:
z_r = -(z - null)
elif args.stat_method is StatCateg.FREQUENTIST:
z_r = -2*(z - null)
print 'scale', x
print 'reduced ev', z_r
pdat = np.array([x, y, z_r, np.ones(x.shape)]).T
print 'pdat', pdat
pdat_clean = []
for d in pdat:
if not np.any(np.isnan(d)): pdat_clean.append(d)
pdat = np.vstack(pdat_clean)
sort_column = 3
pdat_sorted = pdat[pdat[:,sort_column].argsort()]
uni, c = np.unique(pdat[:,sort_column], return_counts=True)
print uni, c
print len(uni)
print np.unique(c)
n = len(uni)
assert len(np.unique(c)) == 1
c = c[0]
col_array = []
for col in pdat_sorted.T:
col_array.append(col.reshape(n, c))
col_array = np.stack(col_array)
sep_arrays = []
for x_i in xrange(n):
sep_arrays.append(col_array[:,x_i])
print len(sep_arrays)
sep_arrays = sep_arrays[0][:3]
print sep_arrays
if args.stat_method is StatCateg.BAYESIAN:
reduced_pdat_mask = (sep_arrays[2] > np.log(10**(3/2.))) # Strong degree of belief
elif args.stat_method is StatCateg.FREQUENTIST:
reduced_pdat_mask = (sep_arrays[2] > 4.61) # 90% CL for 2 DOFS via Wilks
reduced_pdat = sep_arrays.T[reduced_pdat_mask].T
print 'reduced_pdat', reduced_pdat
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
mini, maxi = np.min(x), np.max(x)
ax.set_xlim((mini, maxi))
ax.set_ylim(0, 1)
ax.grid(b=False)
x_v = reduced_pdat[0].round(decimals=4)
y_v = reduced_pdat[1].round(decimals=4)
uniques = np.unique(x_v)
print 'uniques', uniques
if len(uniques) == 1: continue
bw = np.min(np.diff(uniques))
print 'bw', bw
print np.diff(uniques)
uni_x_split = np.split(uniques, np.where(np.diff(uniques) > bw*(1e20))[0] + 1)
print 'len(uni_x_split)', len(uni_x_split)
for uni_x in uni_x_split:
p_x_l, p_y_l = [], []
p_x_u, p_y_u = [], []
for uni in uni_x:
idxes = np.where(x_v == uni)[0]
ymin, ymax = 1, 0
for idx in idxes:
if y_v[idx] < ymin: ymin = y_v[idx]
if y_v[idx] > ymax: ymax = y_v[idx]
p_x_l.append(uni)
p_y_l.append(ymin)
p_x_u.append(uni)
p_y_u.append(ymax)
p_x_l, p_y_l = np.array(p_x_l, dtype=np.float64), np.array(p_y_l, dtype=np.float64)
p_x_u, p_y_u = np.array(list(reversed(p_x_u)), dtype=np.float64), np.array(list(reversed(p_y_u)), dtype=np.float64)
p_x = np.hstack([p_x_l, p_x_u])
p_y = np.hstack([p_y_l, p_y_u])
p_x = np.r_[p_x, p_x[0]]
p_y = np.r_[p_y, p_y[0]]
print 'p_x', p_x
print 'p_y', p_y
try:
tck, u = interpolate.splprep([p_x, p_y], s=1e-5, per=True)
xi, yi = interpolate.splev(np.linspace(0, 1, 1000), tck)
except:
xi, yi = p_x, p_y
ax.fill(xi, yi, 'r', edgecolor='r', linewidth=1)
out = outfile + '_DIM{0}_SRC{1}_AN{2}'.format(dim, isrc, ian)
misc_utils.make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
|