diff options
| author | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-03-21 17:30:06 +0000 |
|---|---|---|
| committer | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-03-21 17:30:06 +0000 |
| commit | c5df1cb77e6e40f701ecf002687d7b3932b28d8f (patch) | |
| tree | 03535770c6510eb22230049403daf6a41c5cc392 /utils | |
| download | MCOptionPricing-c5df1cb77e6e40f701ecf002687d7b3932b28d8f.tar.gz MCOptionPricing-c5df1cb77e6e40f701ecf002687d7b3932b28d8f.zip | |
Initial Commit
Diffstat (limited to 'utils')
| -rw-r--r-- | utils/__init__.py | 0 | ||||
| -rw-r--r-- | utils/engine.py | 106 | ||||
| -rw-r--r-- | utils/enums.py | 40 | ||||
| -rw-r--r-- | utils/misc.py | 65 | ||||
| -rw-r--r-- | utils/path.py | 135 | ||||
| -rw-r--r-- | utils/payoff.py | 265 |
6 files changed, 611 insertions, 0 deletions
diff --git a/utils/__init__.py b/utils/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/utils/__init__.py diff --git a/utils/engine.py b/utils/engine.py new file mode 100644 index 0000000..e8d2b1f --- /dev/null +++ b/utils/engine.py @@ -0,0 +1,106 @@ +# author : S. Mandalia +# shivesh.mandalia@outlook.com +# +# date : March 19, 2020 + +""" +Pricing engine for exotic options. +""" + +import math +from statistics import mean, stdev +from dataclasses import dataclass +from typing import List + +from utils.path import PathGenerator +from utils.payoff import BasePayoff + + +__all__ = ['MCResult', 'PricingEngine'] + + +@dataclass +class MCResult: + """ + Price of option along with its MC error. + """ + price: float + stderr: float + + +@dataclass +class PricingEngine: + """ + Class for generating underlying prices using MC techniques. + + Attributes + ---------- + payoff : Payoff object for calculating the options payoff. + path : PathGenerator object for generating the evolution of the underlying. + + Methods + ---------- + price() + + Examples + ---------- + >>> from utils.engine import PricingEngine + >>> from utils.path import PathGenerator + >>> from utils.payoff import AsianArithmeticPayOff + >>> path = PathGenerator(S=100., r=0.1, div=0.01, vol=0.3) + >>> payoff = AsianArithmeticPayOff(option_right='Call', K=110) + >>> engine = PricingEngine(payoff=payoff, path=path) + >>> print(engine.price(T=range(4))) + 2.1462567745518335 + + """ + payoff: BasePayoff + path: PathGenerator + + def price(self, T: List[float], ntrials: int = 1E4, + antithetic: bool = True) -> MCResult: + """ + Price the option using MC techniques. + + Parameters + ---------- + T : Set of times {t1, t2, ..., tn} in years. + ntrials : Number of trials to simulate. + antithetic : Use antithetic variates technique. + + Returns + ---------- + MCResult : Price of the option. + + """ + if ntrials < len(T): + raise AssertionError('Number of trials cannot be less than the ' + 'number of setting dates!') + + # Generation start + ntrials = int(ntrials // len(T)) + payoffs = [0] * ntrials + for idx in range(ntrials): + # Generate a random path + if not antithetic: + spot_prices = self.path.generate(T) + else: + prices_tuple = self.path.generate_antithetic(T) + spot_prices, a_spot_prices = prices_tuple + + # Calculate the payoff + payoff = self.payoff.calculate(spot_prices) + if antithetic: + a_po = self.payoff.calculate(a_spot_prices) + payoff = (payoff + a_po) / 2 + payoffs[idx] = payoff + + # Discount to current time + df = math.exp(-self.path.net_r * (T[-1] - T[0])) + dis_payoffs = [x * df for x in payoffs] + + # Payoff expectation and standard error + exp_payoff = mean(dis_payoffs) + stderr = stdev(dis_payoffs, exp_payoff) / math.sqrt(ntrials) + + return MCResult(exp_payoff, stderr) diff --git a/utils/enums.py b/utils/enums.py new file mode 100644 index 0000000..6a607ea --- /dev/null +++ b/utils/enums.py @@ -0,0 +1,40 @@ +# author : S. Mandalia +# shivesh.mandalia@outlook.com +# +# date : March 19, 2020 + +""" +Enumeration utility classes. +""" + +from enum import Enum, auto + +__all__ = ['OptionRight', 'BarrierUpDown', 'BarrierInOut'] + + +class PPEnum(Enum): + """Enum with prettier printing.""" + + def __repr__(self) -> str: + return super().__repr__().split('.')[1].split(':')[0] + + def __str__(self) -> str: + return super().__str__().split('.')[1] + + +class OptionRight(PPEnum): + """Right of an option.""" + Call = auto() + Put = auto() + + +class BarrierUpDown(PPEnum): + """Up or down type barrier option.""" + Up = auto() + Down = auto() + + +class BarrierInOut(PPEnum): + """In or out type barrier option.""" + In = auto() + Out = auto() diff --git a/utils/misc.py b/utils/misc.py new file mode 100644 index 0000000..708d759 --- /dev/null +++ b/utils/misc.py @@ -0,0 +1,65 @@ +# author : S. Mandalia +# shivesh.mandalia@outlook.com +# +# date : March 19, 2020 + +""" +Miscellaneous utility methods. +""" + + +__all__ = ['is_num', 'is_pos'] + + +def is_num(val: (int, float)) -> bool: + """ + Check if the input value is a non-infinite number. + + Parameters + ---------- + val : Value to check. + + Returns + ---------- + is_num : Whether it is a non-infinite number. + + Examples + ---------- + >>> from utils.misc import is_num + >>> print(is_num(10)) + True + >>> print(is_num(None)) + False + + """ + if not isinstance(val, (int, float)): + return False + return True + + +def is_pos(val: (int, float)) -> bool: + """ + Check if the input value is a non-infinite positive number. + + Parameters + ---------- + val : Value to check. + + Returns + ---------- + is_pos : Whether it is a non-infinite positive number. + + Examples + ---------- + >>> from utils.misc import is_pos + >>> print(is_pos(10)) + True + >>> print(is_pos(-10)) + False + + """ + if not is_num(val): + return False + if not val >= 0: + return False + return True diff --git a/utils/path.py b/utils/path.py new file mode 100644 index 0000000..6855b7f --- /dev/null +++ b/utils/path.py @@ -0,0 +1,135 @@ +# author : S. Mandalia +# shivesh.mandalia@outlook.com +# +# date : March 19, 2020 + +""" +Path generator for underlying. +""" + +import math +import random +from copy import deepcopy +from dataclasses import dataclass +from typing import List, Tuple + + +__all__ = ['PathGenerator'] + + +@dataclass +class PathGenerator: + """ + Class for generating underlying prices using MC techniques. + + Attributes + ---------- + S : Spot price. + r : Risk-free interest rate. + div : Dividend yield. + vol : Volatility. + net_r : Net risk free rate. + + Methods + ---------- + generate(T) + Generate a random path {S_t1, S_t2, ..., S_tn}. + generate_antithetic(T) + Generate a random plus antithetic path + [{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}]. + + Examples + ---------- + >>> from utils.path import PathGenerator + >>> path = PathGenerator(S=100., r=0.1, div=0.01, vol=0.3) + >>> print(path.generate(T=range(4))) + [100.0, 91.11981160354563, 94.87596210593794, 117.44132223235353] + >>> print(path.generate(T=range(4))) + [100.0, 68.73668230722738, 71.43490333826567, 70.70833180133955] + + """ + S: float + r: float + div: float + vol: float + + @property + def net_r(self) -> float: + """Net risk free rate.""" + return self.r - self.div + + def generate(self, T: List[float]) -> List[float]: + """ + Generate a random path {S_t1, S_t2, ..., S_tn}. + + Parameters + ---------- + T : Set of times {t1, t2, ..., tn} in years. + + Returns + ---------- + spot_prices : Set of prices for the underlying {S_t1, S_t2, ..., S_tn}. + + """ + # Calculate dt time differences + dts = [T[idx + 1] - T[idx] for idx in range(len(T) - 1)] + + spot_prices = [0] * len(T) + spot_prices[0] = self.S + for idx, dt in enumerate(dts): + # Calculate the drift e^{(r - (1/2) σ²) Δt} + drift = math.exp((self.net_r - (1/2) * self.vol**2) * dt) + + # Calculate the volatility term e^{σ √{Δt} N(0, 1)} + rdm_gauss = random.gauss(0, 1) + vol_term = math.exp(self.vol * math.sqrt(dt) * rdm_gauss) + + # Calculate next spot price + S_t = spot_prices[idx] * drift * vol_term + spot_prices[idx + 1] = S_t + return spot_prices + + def generate_antithetic(self, T: List[float]) -> Tuple[List[float], + List[float]]: + """ + Generate a random plus antithetic path + [{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}]. + + Parameters + ---------- + T : Set of times {t1, t2, ..., tn} in years. + + Returns + ---------- + prices_tuple : Set of prices for the underlying + [{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}]. + + """ + # Calculate dt time differences + dts = [T[idx + 1] - T[idx] for idx in range(len(T) - 1)] + + # Create data structures + spot_prices = [0] * len(T) + spot_prices[0] = self.S + + a_spot_prices = deepcopy(spot_prices) + + for idx, dt in enumerate(dts): + # Calculate the drift e^{(r - (1/2) σ²) Δt} + drift = math.exp((self.net_r - (1/2) * self.vol**2) * dt) + + # Calculate the volatility term e^{σ √{Δt} N(0, 1)} + rdm_gauss = random.gauss(0, 1) + a_gauss = -rdm_gauss + vol_term = math.exp(self.vol * math.sqrt(dt) * rdm_gauss) + a_vol_term = math.exp(self.vol * math.sqrt(dt) * a_gauss) + + # Calculate next spot price + S_t = spot_prices[idx] * drift * vol_term + a_S_t = a_spot_prices[idx] * drift * a_vol_term + + # Add to data structure + spot_prices[idx + 1] = S_t + a_spot_prices[idx + 1] = a_S_t + + return (spot_prices, a_spot_prices) diff --git a/utils/payoff.py b/utils/payoff.py new file mode 100644 index 0000000..fffbdba --- /dev/null +++ b/utils/payoff.py @@ -0,0 +1,265 @@ +# author : S. Mandalia +# shivesh.mandalia@outlook.com +# +# date : March 19, 2020 + +""" +Payoff of an option. +""" + +from abc import ABC, abstractmethod +from dataclasses import dataclass +from typing import List + +from utils.enums import OptionRight, BarrierUpDown, BarrierInOut + + +__all__ = ['BasePayoff', 'VanillaPayOff', 'AsianArithmeticPayOff', + 'DiscreteBarrierPayOff'] + + +@dataclass +class BasePayoff(ABC): + """Base class for calculating the payoff.""" + K: float + option_right: (str, OptionRight) + + @property + def option_right(self) -> OptionRight: + """Right of the option.""" + return self._option_right + + @option_right.setter + def option_right(self, val: (str, OptionRight)) -> None: + """Set the option_right of the option.""" + if isinstance(val, str): + if not hasattr(OptionRight, val): + or_names = [x.name for x in OptionRight] + raise ValueError(f'Invalid str {val}, expected {or_names}') + self._option_right = OptionRight[val] + elif isinstance(val, OptionRight): + self._option_right = val + else: + raise TypeError( + f'Expected str or OptionRight, instead got type {type(val)}!' + ) + + def _calculate_call(self, S: float) -> float: + """Call option.""" + return max(S - self.K, 0.) + + def _calculate_put(self, S: float) -> float: + """Put option.""" + return max(self.K - S, 0.) + + @abstractmethod + def calculate(self, S: float) -> float: + """Calulate the payoff for a given spot.""" + + +class VanillaPayOff(BasePayoff): + """ + Class for calculating the payoff of a vanilla option. + + Attributes + ---------- + option_right : Right of the option. + K : Strike price. + + Methods + ---------- + calculate(S) + Calulate the payoff given a spot price. + + Examples + ---------- + >>> from utils.payoff import VanillaPayOff + >>> payoff = VanillaPayOff(option_right='Call', K=150.) + >>> print(payoff.calculate(160.)) + 10.0 + + """ + + def calculate(self, S: (float, List[float])) -> float: + """ + Calulate the payoff given a spot price. + + Parameters + ---------- + S : Spot price or list of spot prices. + + Returns + ---------- + payoff : Payoff. + + Notes + ---------- + If a list is given as input, the final entry will be taken to evaluate. + + """ + if not isinstance(S, float): + S = S[-1] + if self.option_right == OptionRight.Call: + payoff = self._calculate_call(S) + else: + payoff = self._calculate_put(S) + return payoff + + +class AsianArithmeticPayOff(BasePayoff): + """ + Class for calculating the payoff of an arithmetic Asian option. + + Attributes + ---------- + option_right : Right of the option. + K : Strike price. + + Methods + ---------- + calculate(S) + Calulate the payoff given a set of prices for the underlying. + + Examples + ---------- + >>> from utils.payoff import AsianArithmeticPayOff + >>> payoff = AsianArithmeticPayOff(option_right='Call', K=150) + >>> print(payoff.calculate([140, 150, 160, 170, 180])) + 10.0 + + """ + + def calculate(self, S: List[float]) -> float: + """ + Calulate the payoff given a set of prices for the underlying. + + Parameters + ---------- + S : Set of prices for the underlying {S_t1, S_t2, ..., S_tn}. + + Returns + ---------- + payoff : Payoff. + + """ + avg_sum = sum(S) / len(S) + if self.option_right == OptionRight.Call: + payoff = self._calculate_call(avg_sum) + else: + payoff = self._calculate_put(avg_sum) + return payoff + + +@dataclass(init=False) +class DiscreteBarrierPayOff(BasePayoff): + """ + Class for calculating the payoff of a discrete barrier European style + option. + + Attributes + ---------- + option_right : Right of the option. + K : Strike price. + B : Barrier price. + barrier_updown : Up or down type barrier option. + barrier_inout : In or out type barrier option. + + Methods + ---------- + calculate(S) + Calulate the payoff given a set of prices for the underlying. + + Examples + ---------- + >>> from utils.payoff import DiscreteBarrierPayOff + >>> payoff = DiscreteBarrierPayOff(option_right='Call', K=100, B=90, + barrier_updown='Down', barrier_inout='Out') + >>> print(payoff.calculate([100., 110., 120.])) + 20.0 + >>> print(payoff.calculate([100., 110., 120., 80., 110.])) + 0.0 + + """ + B: float + barrier_updown: (str, BarrierUpDown) + barrier_inout: (str, BarrierInOut) + + def __init__(self, option_right: (str, OptionRight), K: float, B: float, + barrier_updown: (str, BarrierUpDown), + barrier_inout: (str, BarrierInOut)): + super().__init__(K, option_right) + self.B = B + self.barrier_updown = barrier_updown + self.barrier_inout = barrier_inout + + @property + def barrier_updown(self) -> BarrierUpDown: + """Up or down type barrier option.""" + return self._barrier_updown + + @barrier_updown.setter + def barrier_updown(self, val: (str, BarrierUpDown)) -> None: + """Set either up or down type barrier option.""" + if isinstance(val, str): + if not hasattr(BarrierUpDown, val): + or_names = [x.name for x in BarrierUpDown] + raise ValueError(f'Invalid str {val}, expected {or_names}') + self._barrier_updown = BarrierUpDown[val] + elif isinstance(val, BarrierUpDown): + self._barrier_updown = val + else: + raise TypeError( + f'Expected str or BarrierUpDown, instead got type {type(val)}!' + ) + + @property + def barrier_inout(self) -> BarrierInOut: + """Up or down type barrier option.""" + return self._barrier_inout + + @barrier_inout.setter + def barrier_inout(self, val: (str, BarrierInOut)) -> None: + """Set either up or down type barrier option.""" + if isinstance(val, str): + if not hasattr(BarrierInOut, val): + or_names = [x.name for x in BarrierInOut] + raise ValueError(f'Invalid str {val}, expected {or_names}') + self._barrier_inout = BarrierInOut[val] + elif isinstance(val, BarrierInOut): + self._barrier_inout = val + else: + raise TypeError( + f'Expected str or BarrierInOut, instead got type {type(val)}!' + ) + + def calculate(self, S: List[float]) -> float: + """ + Calulate the payoff given a set of prices for the underlying. + + Parameters + ---------- + S : Set of prices for the underlying {S_t1, S_t2, ..., S_tn}. + + Returns + ---------- + payoff : Payoff. + + """ + # Calculate the heavyside + if self.barrier_updown == BarrierUpDown.Up: + H = [1 if self.B - x > 0 else 0 for x in S] + else: + H = [1 if x - self.B > 0 else 0 for x in S] + + # Calculate whether it has been activated + if self.barrier_inout == BarrierInOut.In: + activation = 1 if min(H) == 0 else 0 + else: + activation = min(H) + + # Calculate payoff using final price + if self.option_right == OptionRight.Call: + payoff = activation * self._calculate_call(S[-1]) + else: + payoff = activation * self._calculate_put(S[-1]) + return payoff |
