1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
# author : S. Mandalia
# shivesh.mandalia@outlook.com
#
# date : March 19, 2020
"""
Path generator for underlying.
"""
import math
import random
from copy import deepcopy
from dataclasses import dataclass
from typing import List, Tuple
__all__ = ['PathGenerator']
@dataclass
class PathGenerator:
"""
Class for generating underlying prices using MC techniques.
Attributes
----------
S : Spot price.
r : Risk-free interest rate.
div : Dividend yield.
vol : Volatility.
net_r : Net risk free rate.
Methods
----------
generate(T)
Generate a random path {S_t1, S_t2, ..., S_tn}.
generate_antithetic(T)
Generate a random plus antithetic path
[{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}].
Examples
----------
>>> from utils.path import PathGenerator
>>> path = PathGenerator(S=100., r=0.1, div=0.01, vol=0.3)
>>> print(path.generate(T=range(4)))
[100.0, 100.33539853588853, 122.76017088387074, 142.29540684005462]
>>> print(path.generate(T=range(4)))
[100.0, 73.03094019139712, 77.37310245438943, 66.54240939439934]
"""
S: float
r: float
div: float
vol: float
@property
def net_r(self) -> float:
"""Net risk free rate."""
return self.r - self.div
def generate(self, T: List[float]) -> List[float]:
"""
Generate a random path {S_t1, S_t2, ..., S_tn}.
Parameters
----------
T : Set of times {t1, t2, ..., tn} in years.
Returns
----------
spot_prices : Set of prices for the underlying {S_t1, S_t2, ..., S_tn}.
"""
# Calculate dt time differences
dts = [T[idx + 1] - T[idx] for idx in range(len(T) - 1)]
spot_prices = [0] * len(T)
spot_prices[0] = self.S
for idx, dt in enumerate(dts):
# Calculate the drift e^{(r - (1/2) σ²) Δt}
drift = math.exp((self.net_r - (1/2) * self.vol**2) * dt)
# Calculate the volatility term e^{σ √{Δt} N(0, 1)}
rdm_gauss = random.gauss(0, 1)
vol_term = math.exp(self.vol * math.sqrt(dt) * rdm_gauss)
# Calculate next spot price
S_t = spot_prices[idx] * drift * vol_term
spot_prices[idx + 1] = S_t
return spot_prices
def generate_antithetic(self, T: List[float]) -> Tuple[List[float],
List[float]]:
"""
Generate a random plus antithetic path
[{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}].
Parameters
----------
T : Set of times {t1, t2, ..., tn} in years.
Returns
----------
prices_tuple : Set of prices for the underlying
[{S_t1, S_t2, ..., S_tn}, {S'_t1, S'_t2, ..., S'_tn}].
"""
# Calculate dt time differences
dts = [T[idx + 1] - T[idx] for idx in range(len(T) - 1)]
# Create data structures
spot_prices = [0] * len(T)
spot_prices[0] = self.S
a_spot_prices = deepcopy(spot_prices)
for idx, dt in enumerate(dts):
# Calculate the drift e^{(r - (1/2) σ²) Δt}
drift = math.exp((self.net_r - (1/2) * self.vol**2) * dt)
# Calculate the volatility term e^{σ √{Δt} N(0, 1)}
rdm_gauss = random.gauss(0, 1)
a_gauss = -rdm_gauss
vol_term = math.exp(self.vol * math.sqrt(dt) * rdm_gauss)
a_vol_term = math.exp(self.vol * math.sqrt(dt) * a_gauss)
# Calculate next spot price
S_t = spot_prices[idx] * drift * vol_term
a_S_t = a_spot_prices[idx] * drift * a_vol_term
# Add to data structure
spot_prices[idx + 1] = S_t
a_spot_prices[idx + 1] = a_S_t
return (spot_prices, a_spot_prices)
|