1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/// --- Day 12: Hill Climbing Algorithm ---
///
/// You try contacting the Elves using your handheld device, but the river you're following must be
/// too low to get a decent signal.
///
/// You ask the device for a heightmap of the surrounding area (your puzzle input). The heightmap
/// shows the local area from above broken into a grid; the elevation of each square of the grid is
/// given by a single lowercase letter, where a is the lowest elevation, b is the next-lowest, and
/// so on up to the highest elevation, z.
///
/// Also included on the heightmap are marks for your current position (S) and the location that
/// should get the best signal (E). Your current position (S) has elevation a, and the location
/// that should get the best signal (E) has elevation z.
///
/// You'd like to reach E, but to save energy, you should do it in as few steps as possible.
/// During each step, you can move exactly one square up, down, left, or right. To avoid needing
/// to get out your climbing gear, the elevation of the destination square can be at most one
/// higher than the elevation of your current square; that is, if your current elevation is m, you
/// could step to elevation n, but not to elevation o. (This also means that the elevation of the
/// destination square can be much lower than the elevation of your current square.)
///
/// For example:
///
/// ```
/// Sabqponm
/// abcryxxl
/// accszExk
/// acctuvwj
/// abdefghi
/// ```
///
/// Here, you start in the top-left corner; your goal is near the middle. You could start by
/// moving down or right, but eventually you'll need to head toward the e at the bottom. From
/// there, you can spiral around to the goal:
///
/// ```
/// v..v<<<<
/// >v.vv<<^
/// .>vv>E^^
/// ..v>>>^^
/// ..>>>>>^
/// ```
///
/// In the above diagram, the symbols indicate whether the path exits each square moving up (^),
/// down (v), left (<), or right (>). The location that should get the best signal is still E, and
/// . marks unvisited squares.
///
/// This path reaches the goal in 31 steps, the fewest possible.
///
/// What is the fewest steps required to move from your current position to the location that
/// should get the best signal?
use clap::Parser;
use itertools::Itertools;
use pathfinding::prelude::bfs;
use std::fs::File;
use std::hash::{Hash, Hasher};
use std::io::prelude::*;
use std::io::BufReader;
use std::path::PathBuf;
const FILEPATH: &'static str = "examples/input.txt";
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Cli {
#[clap(short, long, default_value = FILEPATH)]
file: PathBuf,
}
#[derive(Clone, Debug)]
struct Arena(Vec<Vec<Node>>);
#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
struct Pos(usize, usize);
#[derive(Clone, Debug)]
struct Node {
pos: Pos,
value: char,
connected: Vec<Pos>,
}
impl Node {
fn new(pos: Pos, value: char) -> Self {
Node {
pos,
value,
connected: Vec::new(),
}
}
}
impl PartialEq for Node {
fn eq(&self, other: &Self) -> bool {
self.pos == other.pos
}
}
impl Eq for Node {}
impl Hash for Node {
fn hash<H: Hasher>(&self, state: &mut H) {
self.pos.hash(state);
}
}
impl Arena {
fn get(&self, coords: Pos) -> &Node {
&self.0[coords.0][coords.1]
}
fn get_mut(&mut self, coords: Pos) -> &mut Node {
&mut self.0[coords.0][coords.1]
}
}
fn is_connected(x: char, y: char) -> bool {
let (x, y) = match (x, y) {
('S', _) => ('a', y),
('E', _) => ('z', y),
(_, 'S') => (x, 'a'),
(_, 'E') => (x, 'z'),
_ => (x, y),
};
let (x, y) = (x as i8, y as i8);
i8::abs(x - y) <= 1 || x > y
}
fn main() {
let args = Cli::parse();
let file = File::open(&args.file).unwrap();
let reader = BufReader::new(file);
let mut arena = Arena(Vec::new());
let _ = reader
.lines()
.enumerate()
.map(|(idx, l)| {
l.unwrap()
.chars()
.enumerate()
.map(|(idy, c)| Node::new(Pos(idx, idy), c))
.collect_vec()
})
.scan(&mut arena, |arena, row| {
arena.0.push(row);
Some(())
})
.last();
let xdim = arena.0.len();
let ydim = arena.0[0].len();
let mut start_pos = None;
let mut end_pos = None;
for idx in 0..xdim {
for idy in 0..ydim {
let node_val = arena.get(Pos(idx, idy)).value;
match node_val {
'S' => start_pos = Some(Pos(idx, idy)),
'E' => end_pos = Some(Pos(idx, idy)),
_ => (),
}
if idx != 0 {
let up_idx = Pos(idx - 1, idy);
if is_connected(node_val, arena.get(up_idx).value) {
arena.get_mut(Pos(idx, idy)).connected.push(up_idx);
}
}
if idx != xdim - 1 {
let down_idx = Pos(idx + 1, idy);
if is_connected(node_val, arena.get(down_idx).value) {
arena.get_mut(Pos(idx, idy)).connected.push(down_idx);
}
}
if idy != 0 {
let left_idx = Pos(idx, idy - 1);
if is_connected(node_val, arena.get(left_idx).value) {
arena.get_mut(Pos(idx, idy)).connected.push(left_idx);
}
}
if idy != ydim - 1 {
let right_idx = Pos(idx, idy + 1);
if is_connected(node_val, arena.get(right_idx).value) {
arena.get_mut(Pos(idx, idy)).connected.push(right_idx);
}
}
}
}
let start = arena.get(start_pos.unwrap());
let end = arena.get(end_pos.unwrap());
let res = bfs(
&start,
|n| n.connected.iter().map(|&p| arena.get(p)),
|&n| n == end,
)
.unwrap()
.len()
- 1;
println!("{res}");
}
|