summaryrefslogtreecommitdiffstats
path: root/day12b/src/main.rs
blob: 9c422c39e42ba06fdb1f156dcd6d86b09f54e3ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/// --- Part Two ---
///
/// As you walk up the hill, you suspect that the Elves will want to turn this into a hiking
/// trail. The beginning isn't very scenic, though; perhaps you can find a better starting point.
///
/// To maximize exercise while hiking, the trail should start as low as possible: elevation a. The
/// goal is still the square marked E. However, the trail should still be direct, taking the fewest
/// steps to reach its goal. So, you'll need to find the shortest path from any square at elevation
/// a to the square marked E.
///
/// Again consider the example from above:
///
/// ```
/// Sabqponm
/// abcryxxl
/// accszExk
/// acctuvwj
/// abdefghi
/// ```
///
/// Now, there are six choices for starting position (five marked a, plus the square marked S that
/// counts as being at elevation a). If you start at the bottom-left square, you can reach the goal
/// most quickly:
///
/// ```
/// ...v<<<<
/// ...vv<<^
/// ...v>E^^
/// .>v>>>^^
/// >^>>>>>^
/// ```
///
/// This path reaches the goal in only 29 steps, the fewest possible.
///
/// What is the fewest steps required to move starting from any square with elevation a to the
/// location that should get the best signal?
use clap::Parser;
use itertools::Itertools;
use pathfinding::prelude::bfs;

use std::fs::File;
use std::hash::{Hash, Hasher};
use std::io::prelude::*;
use std::io::BufReader;
use std::path::PathBuf;

const FILEPATH: &'static str = "examples/input.txt";

#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Cli {
    #[clap(short, long, default_value = FILEPATH)]
    file: PathBuf,
}

#[derive(Clone, Debug)]
struct Arena(Vec<Vec<Node>>);

#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
struct Pos(usize, usize);

#[derive(Clone, Debug)]
struct Node {
    pos: Pos,
    value: char,
    connected: Vec<Pos>,
}

impl Node {
    fn new(pos: Pos, value: char) -> Self {
        Node {
            pos,
            value,
            connected: Vec::new(),
        }
    }
}

impl PartialEq for Node {
    fn eq(&self, other: &Self) -> bool {
        self.pos == other.pos
    }
}

impl Eq for Node {}

impl Hash for Node {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.pos.hash(state);
    }
}

impl Arena {
    fn get(&self, coords: Pos) -> &Node {
        &self.0[coords.0][coords.1]
    }

    fn get_mut(&mut self, coords: Pos) -> &mut Node {
        &mut self.0[coords.0][coords.1]
    }
}

fn is_connected(x: char, y: char) -> bool {
    let (x, y) = match (x, y) {
        ('S', _) => ('a', y),
        ('E', _) => ('z', y),
        (_, 'S') => (x, 'a'),
        (_, 'E') => (x, 'z'),
        _ => (x, y),
    };

    let (x, y) = (x as i8, y as i8);
    i8::abs(x - y) <= 1 || x > y
}

fn main() {
    let args = Cli::parse();

    let file = File::open(&args.file).unwrap();
    let reader = BufReader::new(file);

    let mut arena = Arena(Vec::new());
    let _ = reader
        .lines()
        .enumerate()
        .map(|(idx, l)| {
            l.unwrap()
                .chars()
                .enumerate()
                .map(|(idy, c)| Node::new(Pos(idx, idy), c))
                .collect_vec()
        })
        .scan(&mut arena, |arena, row| {
            arena.0.push(row);
            Some(())
        })
        .last();

    let xdim = arena.0.len();
    let ydim = arena.0[0].len();

    let mut lowest_pos = Vec::new();
    let mut end_pos = None;

    for idx in 0..xdim {
        for idy in 0..ydim {
            let node_val = arena.get(Pos(idx, idy)).value;

            match node_val {
                'a' | 'S' => lowest_pos.push(Pos(idx, idy)),
                'E' => end_pos = Some(Pos(idx, idy)),
                _ => (),
            }

            if idx != 0 {
                let up_idx = Pos(idx - 1, idy);
                if is_connected(node_val, arena.get(up_idx).value) {
                    arena.get_mut(Pos(idx, idy)).connected.push(up_idx);
                }
            }

            if idx != xdim - 1 {
                let down_idx = Pos(idx + 1, idy);
                if is_connected(node_val, arena.get(down_idx).value) {
                    arena.get_mut(Pos(idx, idy)).connected.push(down_idx);
                }
            }

            if idy != 0 {
                let left_idx = Pos(idx, idy - 1);
                if is_connected(node_val, arena.get(left_idx).value) {
                    arena.get_mut(Pos(idx, idy)).connected.push(left_idx);
                }
            }

            if idy != ydim - 1 {
                let right_idx = Pos(idx, idy + 1);
                if is_connected(node_val, arena.get(right_idx).value) {
                    arena.get_mut(Pos(idx, idy)).connected.push(right_idx);
                }
            }
        }
    }

    let end = arena.get(end_pos.unwrap());

    let res = lowest_pos
        .into_iter()
        .filter_map(|s| {
            let steps = bfs(
                &arena.get(s),
                |n| n.connected.iter().map(|&p| arena.get(p)),
                |&n| n == end,
            )?
            .len()
                - 1;
            Some(steps)
        })
        .min()
        .unwrap();
    println!("{res}");
}