aboutsummaryrefslogtreecommitdiffstats
path: root/utils/gf.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-06 17:21:57 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-06 17:21:57 -0500
commitccffb521195eb5f41471e166e1ba8f695740bcb3 (patch)
tree28734a167b71a1d3f2a438fb09835de11aa730df /utils/gf.py
parent30fddc32cfd5af1fc1f49de2e91b39c81cdf10e2 (diff)
downloadGolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.tar.gz
GolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.zip
add test scripts for Golem LV and NSI
Diffstat (limited to 'utils/gf.py')
-rw-r--r--utils/gf.py70
1 files changed, 1 insertions, 69 deletions
diff --git a/utils/gf.py b/utils/gf.py
index eaa9450..3fb063b 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -15,7 +15,7 @@ from functools import partial
import GolemFitPy as gf
-from utils.enums import *
+from utils.enums import DataType, SteeringCateg
from utils.misc import enum_parse, thread_factors
@@ -70,60 +70,6 @@ def data_distributions(fitter):
return hdat, binedges
-def fit_flags(fitflag_categ):
- flags = gf.FitParametersFlag()
- if fitflag_categ is FitFlagCateg.xs:
- # False means it's not fixed in minimization
- flags.NeutrinoAntineutrinoRatio = False
- return flags
-
-
-def fit_params(fit_categ):
- params = gf.FitParameters()
- params.astroNorm = 7.5
- params.astroDeltaGamma = 0.9
- if fit_categ is FitCateg.hesespl:
- params.astroNormSec = 0
- elif fit_categ is FitCateg.hesedpl:
- params.astroNormSec=7.0
- elif fit_categ is FitCateg.zpspl:
- # zero prompt, single powerlaw
- params.promptNorm = 0
- params.astroNormSec = 0
- elif fit_categ is FitCateg.zpdpl:
- # zero prompt, double powerlaw
- params.promptNorm = 0
- params.astroNormSec=7.0
- elif fit_categ is FitCateg.nunubar2:
- params.NeutrinoAntineutrinoRatio = 2
-
-
-def fit_priors(fitpriors_categ):
- priors = gf.Priors()
- if fitpriors_categ == FitPriorsCateg.xs:
- priors.promptNormCenter = 1
- priors.promptNormWidth = 3
- priors.astroDeltaGammaCenter = 0
- priors.astroDeltaGammaWidth = 1
- return priors
-
-
-def gen_steering_params(steering_categ, quiet=False):
- params = gf.SteeringParams()
- if quiet: params.quiet = True
- params.fastmode = False
- params.do_HESE_reshuffle = False
- params.numc_tag = steering_categ.name
- params.baseline_astro_spectral_index = -2.
- if steering_categ is SteeringCateg.LONGLIFE:
- params.years = [999]
- params.numc_tag = 'std_half1'
- if steering_categ is SteeringCateg.DPL:
- params.diffuse_fit_type = gf.DiffuseFitType.DoublePowerLaw
- params.numc_tag = 'std_half1'
- return params
-
-
def gf_argparse(parser):
parser.add_argument(
'--data', default='real', type=partial(enum_parse, c=DataType),
@@ -134,18 +80,4 @@ def gf_argparse(parser):
choices=SteeringCateg,
help='use asimov/fake dataset with specific steering'
)
- parser.add_argument(
- '--aft', default='hesespl', type=partial(enum_parse, c=FitCateg),
- choices=FitCateg,
- help='use asimov/fake dataset with specific Fit'
- )
- parser.add_argument(
- '--axs', default='nom', type=partial(enum_parse, c=XSCateg),
- choices=XSCateg,
- help='use asimov/fake dataset with xs scaling'
- )
- parser.add_argument(
- '--priors', default='uniform', type=partial(enum_parse, c=Priors),
- choices=Priors, help='Bayesian priors'
- )