aboutsummaryrefslogtreecommitdiffstats
path: root/utils/plot.py
diff options
context:
space:
mode:
authorShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
committerShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
commit402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 (patch)
treeb619c6efb0eb303e164bbd27691cdd9f8fce36a2 /utils/plot.py
parent3a5a6c658e45402d413970e8d273a656ed74dcf5 (diff)
downloadGolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.tar.gz
GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.zip
reogranise into a python package
Diffstat (limited to 'utils/plot.py')
-rw-r--r--utils/plot.py1030
1 files changed, 0 insertions, 1030 deletions
diff --git a/utils/plot.py b/utils/plot.py
deleted file mode 100644
index d19a52e..0000000
--- a/utils/plot.py
+++ /dev/null
@@ -1,1030 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 19, 2018
-
-"""
-Plotting functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import socket
-from copy import deepcopy
-
-import numpy as np
-import numpy.ma as ma
-from scipy.interpolate import splev, splprep
-from scipy.ndimage.filters import gaussian_filter
-
-import matplotlib as mpl
-import matplotlib.patches as patches
-import matplotlib.gridspec as gridspec
-mpl.use('Agg')
-
-from matplotlib import rc
-from matplotlib import pyplot as plt
-from matplotlib.offsetbox import AnchoredText
-from matplotlib.lines import Line2D
-from matplotlib.patches import Patch
-from matplotlib.patches import Arrow
-
-tRed = list(np.array([226,101,95]) / 255.)
-tBlue = list(np.array([96,149,201]) / 255.)
-tGreen = list(np.array([170,196,109]) / 255.)
-
-import getdist
-from getdist import plots, mcsamples
-
-import ternary
-from ternary.heatmapping import polygon_generator
-
-import shapely.geometry as geometry
-
-from shapely.ops import cascaded_union, polygonize
-from scipy.spatial import Delaunay
-
-from utils.enums import DataType, str_enum
-from utils.enums import Likelihood, ParamTag, StatCateg, Texture
-from utils.misc import get_units, make_dir, solve_ratio, interval
-from utils.fr import angles_to_u, angles_to_fr, SCALE_BOUNDARIES
-
-
-BAYES_K = 1. # Strong degree of belief.
-# BAYES_K = 3/2. # Very strong degree of belief.
-# BAYES_K = 2. # Decisive degree of belief
-
-
-LV_ATMO_90PC_LIMITS = {
- 3: (2E-24, 1E-1),
- 4: (2.7E-28, 3.16E-25),
- 5: (1.5E-32, 1.12E-27),
- 6: (9.1E-37, 2.82E-30),
- 7: (3.6E-41, 1.77E-32),
- 8: (1.4E-45, 1.00E-34)
-}
-
-
-PS = 8.203E-20 # GeV^{-1}
-PLANCK_SCALE = {
- 5: PS,
- 6: PS**2,
- 7: PS**3,
- 8: PS**4
-}
-
-
-if os.path.isfile('./plot_llh/paper.mplstyle'):
- plt.style.use('./plot_llh/paper.mplstyle')
-elif os.environ.get('GOLEMSOURCEPATH') is not None:
- plt.style.use(os.environ['GOLEMSOURCEPATH']+'/GolemFit/scripts/paper/paper.mplstyle')
-if 'submitter' in socket.gethostname():
- rc('text', usetex=False)
-
-mpl.rcParams['text.latex.preamble'] = [
- r'\usepackage{xcolor}',
- r'\usepackage{amsmath}',
- r'\usepackage{amssymb}']
-mpl.rcParams['text.latex.unicode'] = True
-
-
-def gen_figtext(args):
- """Generate the figure text."""
- t = r'$'
- if args.data is DataType.REAL:
- t += r'\textbf{IceCube\:Preliminary}' + '$\n$'
- elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
- t += r'{\rm\bf IceCube\:Simulation}' + '$\n$'
- t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format(
- solve_ratio(args.injected_ratio).replace('_', ':')
- ) + '$\n$'
- t += r'{\rm Source\:composition}'+r'\:=\:({0})'.format(
- solve_ratio(args.source_ratio).replace('_', ':')
- ) + r'_\text{S}'
- t += '$\n$' + r'{\rm Dimension}'+r' = {0}$'.format(args.dimension)
- return t
-
-
-def texture_label(x, dim):
- cpt = r'c' if dim % 2 == 0 else r'a'
- if x == Texture.OEU:
- # return r'$\mathcal{O}_{e\mu}$'
- return r'$\mathring{'+cpt+r'}_{e\mu}^{('+str(int(dim))+r')}$'
- elif x == Texture.OET:
- # return r'$\mathcal{O}_{e\tau}$'
- return r'$\mathring{'+cpt+r'}_{\tau e}^{('+str(int(dim))+r')}$'
- elif x == Texture.OUT:
- # return r'$\mathcal{O}_{\mu\tau}$'
- return r'$\mathring{'+cpt+r'}_{\mu\tau}^{('+str(int(dim))+r')}$'
- else:
- raise AssertionError
-
-
-def cmap_discretize(cmap, N):
- colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
- colors_rgba = cmap(colors_i)
- indices = np.linspace(0, 1., N+1)
- cdict = {}
- for ki,key in enumerate(('red','green','blue')):
- cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ]
- # Return colormap object.
- return mpl.colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
-
-
-def get_limit(scales, statistic, args, mask_initial=False, return_interp=False):
- max_st = np.max(statistic)
- print 'scales, stat', zip(scales, statistic)
- if args.stat_method is StatCateg.BAYESIAN:
- if (statistic[0] - max_st) > np.log(10**(BAYES_K)):
- raise AssertionError('Discovered LV!')
-
- try:
- tck, u = splprep([scales, statistic], s=0)
- except:
- print 'Failed to spline'
- # return None
- raise
- sc, st = splev(np.linspace(0, 1, 1000), tck)
-
- if mask_initial:
- scales_rm = sc[sc >= scales[1]]
- statistic_rm = st[sc >= scales[1]]
- else:
- scales_rm = sc
- statistic_rm = st
-
- min_idx = np.argmin(scales)
- null = statistic[min_idx]
- # if np.abs(statistic_rm[0] - null) > 0.8:
- # print 'Warning, null incompatible with smallest scanned scale! For ' \
- # 'DIM {0} [{1}, {2}, {3}]!'.format(
- # args.dimension, *args.source_ratio
- # )
- # null = statistic_rm[0]
- if args.stat_method is StatCateg.BAYESIAN:
- reduced_ev = -(statistic_rm - null)
- print '[reduced_ev > np.log(10**(BAYES_K))]', np.sum([reduced_ev > np.log(10**(BAYES_K))])
- al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
- else:
- assert 0
- if len(al) == 0:
- print 'No points for DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
- re = -(statistic-null)[scales > al[0]]
- if np.sum(re < np.log(10**(BAYES_K)) - 0.1) >= 2:
- print 'Warning, peaked contour does not exclude large scales! For ' \
- 'DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
- if np.sum(re >= np.log(10**(BAYES_K)) + 0.0) < 2:
- print 'Warning, only single point above threshold! For ' \
- 'DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
-
- if return_interp:
- return (scales_rm, reduced_ev)
-
- # Divide by 2 to convert to standard SME coefficient
- lim = al[0] - np.log10(2.)
- # lim = al[0]
- print 'limit = {0}'.format(lim)
- return lim
-
-
-def heatmap(data, scale, vmin=None, vmax=None, style='triangular'):
- for k, v in data.items():
- data[k] = np.array(v)
- style = style.lower()[0]
- if style not in ["t", "h", 'd']:
- raise ValueError("Heatmap style must be 'triangular', 'dual-triangular', or 'hexagonal'")
-
- vertices_values = polygon_generator(data, scale, style)
-
- vertices = []
- for v, value in vertices_values:
- vertices.append(v)
- return vertices
-
-
-def get_tax(ax, scale, ax_labels, rot_ax_labels=False, fontsize=23):
- ax.set_aspect('equal')
-
- # Boundary and Gridlines
- fig, tax = ternary.figure(ax=ax, scale=scale)
-
- # Draw Boundary and Gridlines
- tax.boundary(linewidth=2.0)
- tax.gridlines(color='grey', multiple=scale/5., linewidth=0.5, alpha=0.7, ls='--')
- # tax.gridlines(color='grey', multiple=scale/10., linewidth=0.2, alpha=1, ls=':')
-
- # Set Axis labels and Title
- if rot_ax_labels: roty, rotz = (-60, 60)
- else: roty, rotz = (0, 0)
- tax.bottom_axis_label(
- ax_labels[0], fontsize=fontsize+4,
- position=(0.55, -0.10/2, 0.5), rotation=0
- )
- tax.right_axis_label(
- ax_labels[1], fontsize=fontsize+4,
- position=(2./5+0.1, 3./5+0.06, 0), rotation=roty
- )
- tax.left_axis_label(
- ax_labels[2], fontsize=fontsize+4,
- position=(-0.15, 3./5+0.1, 2./5), rotation=rotz
- )
-
- # Remove default Matplotlib axis
- tax.get_axes().axis('off')
- tax.clear_matplotlib_ticks()
-
- # Set ticks
- ticks = np.linspace(0, 1, 6)
- tax.ticks(ticks=ticks, locations=ticks*scale, axis='lr', linewidth=1,
- offset=0.03, fontsize=fontsize, tick_formats='%.1f')
- tax.ticks(ticks=ticks, locations=ticks*scale, axis='b', linewidth=1,
- offset=0.02, fontsize=fontsize, tick_formats='%.1f')
- # tax.ticks()
-
- tax._redraw_labels()
-
- return tax
-
-
-def project(p):
- """Convert from flavour to cartesian."""
- a, b, c = p
- x = a + b/2.
- y = b * np.sqrt(3)/2.
- return [x, y]
-
-
-def project_toflavour(p, nbins):
- """Convert from cartesian to flavour space."""
- x, y = p
- b = y / (np.sqrt(3)/2.)
- a = x - b/2.
- return [a, b, nbins-a-b]
-
-
-def tax_fill(ax, points, nbins, **kwargs):
- pol = np.array(map(project, points))
- ax.fill(pol.T[0]*nbins, pol.T[1]*nbins, **kwargs)
-
-
-def alpha_shape(points, alpha):
- """
- Compute the alpha shape (concave hull) of a set
- of points.
- @param points: Iterable container of points.
- @param alpha: alpha value to influence the
- gooeyness of the border. Smaller numbers
- don't fall inward as much as larger numbers.
- Too large, and you lose everything!
- """
- if len(points) < 4:
- # When you have a triangle, there is no sense
- # in computing an alpha shape.
- return geometry.MultiPoint(list(points)).convex_hull
- def add_edge(edges, edge_points, coords, i, j):
- """
- Add a line between the i-th and j-th points,
- if not in the list already
- """
- if (i, j) in edges or (j, i) in edges:
- # already added
- return
- edges.add( (i, j) )
- edge_points.append(coords[ [i, j] ])
- coords = np.array([point.coords[0]
- for point in points])
- tri = Delaunay(coords)
- edges = set()
- edge_points = []
- # loop over triangles:
- # ia, ib, ic = indices of corner points of the
- # triangle
- for ia, ib, ic in tri.vertices:
- pa = coords[ia]
- pb = coords[ib]
- pc = coords[ic]
- # Lengths of sides of triangle
- a = np.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
- b = np.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
- c = np.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
- # Semiperimeter of triangle
- s = (a + b + c)/2.0
- # Area of triangle by Heron's formula
- area = np.sqrt(s*(s-a)*(s-b)*(s-c))
- circum_r = a*b*c/(4.0*area)
- # Here's the radius filter.
- #print circum_r
- if circum_r < 1.0/alpha:
- add_edge(edges, edge_points, coords, ia, ib)
- add_edge(edges, edge_points, coords, ib, ic)
- add_edge(edges, edge_points, coords, ic, ia)
- m = geometry.MultiLineString(edge_points)
- triangles = list(polygonize(m))
- return cascaded_union(triangles), edge_points
-
-
-def flavour_contour(frs, nbins, coverage, ax=None, smoothing=0.4,
- hist_smooth=0.05, plot=True, fill=False, oversample=1.,
- delaunay=False, d_alpha=1.5, d_gauss=0.08, debug=False,
- **kwargs):
- """Plot the flavour contour for a specified coverage."""
- # Histogram in flavour space
- os_nbins = nbins * oversample
- H, b = np.histogramdd(
- (frs[:,0], frs[:,1], frs[:,2]),
- bins=(os_nbins+1, os_nbins+1, os_nbins+1),
- range=((0, 1), (0, 1), (0, 1))
- )
- H = H / np.sum(H)
-
- # 3D smoothing
- H_s = gaussian_filter(H, sigma=hist_smooth)
-
- # Finding coverage
- H_r = np.ravel(H_s)
- H_rs = np.argsort(H_r)[::-1]
- H_crs = np.cumsum(H_r[H_rs])
- thres = np.searchsorted(H_crs, coverage/100.)
- mask_r = np.zeros(H_r.shape)
- mask_r[H_rs[:thres]] = 1
- mask = mask_r.reshape(H_s.shape)
-
- # Get vertices inside covered region
- binx = np.linspace(0, 1, os_nbins+1)
- interp_dict = {}
- for i in xrange(len(binx)):
- for j in xrange(len(binx)):
- for k in xrange(len(binx)):
- if mask[i][j][k] == 1:
- interp_dict[(i, j, k)] = H_s[i, j, k]
- vertices = np.array(heatmap(interp_dict, os_nbins))
- points = vertices.reshape((len(vertices)*3, 2))
- if debug:
- ax.scatter(*(points/float(oversample)).T, marker='o', s=3, alpha=1.0, color=kwargs['color'], zorder=9)
-
- pc = geometry.MultiPoint(points)
- if not delaunay:
- # Convex full to find points forming exterior bound
- polygon = pc.convex_hull
- ex_cor = np.array(list(polygon.exterior.coords))
- else:
- # Delaunay
- concave_hull, edge_points = alpha_shape(pc, alpha=d_alpha)
- polygon = geometry.Polygon(concave_hull.buffer(1))
- if d_gauss == 0.:
- ex_cor = np.array(list(polygon.exterior.coords))
- else:
- ex_cor = gaussian_filter(
- np.array(list(polygon.exterior.coords)), sigma=d_gauss
- )
-
- # Join points with a spline
- tck, u = splprep([ex_cor.T[0], ex_cor.T[1]], s=0., per=1, k=1)
- xi, yi = map(np.array, splev(np.linspace(0, 1, 300), tck))
-
- # Spline again to smooth
- if smoothing != 0:
- tck, u = splprep([xi, yi], s=smoothing, per=1, k=3)
- xi, yi = map(np.array, splev(np.linspace(0, 1, 600), tck))
-
- xi /= float(oversample)
- yi /= float(oversample)
- ev_polygon = np.dstack((xi, yi))[0]
-
- # Remove points interpolated outside flavour triangle
- f_ev_polygon = np.array(map(lambda x: project_toflavour(x, nbins), ev_polygon))
-
- xf, yf, zf = f_ev_polygon.T
- mask = np.array((xf < 0) | (yf < 0) | (zf < 0) | (xf > nbins) |
- (yf > nbins) | (zf > nbins))
- ev_polygon = np.dstack((xi[~mask], yi[~mask]))[0]
-
- # Plot
- if plot:
- if fill:
- ax.fill(
- ev_polygon.T[0], ev_polygon.T[1],
- label=r'{0}\%'.format(int(coverage)), **kwargs
- )
- else:
- ax.plot(
- ev_polygon.T[0], ev_polygon.T[1],
- label=r'{0}\%'.format(int(coverage)), **kwargs
- )
- else:
- return ev_polygon
-
-def plot_Tchain(Tchain, axes_labels, ranges):
- """Plot the Tchain using getdist."""
- Tsample = mcsamples.MCSamples(
- samples=Tchain, labels=axes_labels, ranges=ranges
- )
-
- Tsample.updateSettings({'contours': [0.90, 0.99]})
- Tsample.num_bins_2D=10
- Tsample.fine_bins_2D=50
- Tsample.smooth_scale_2D=0.05
-
- g = plots.getSubplotPlotter()
- g.settings.num_plot_contours = 2
- g.settings.axes_fontsize = 10
- g.settings.figure_legend_frame = False
- g.settings.lab_fontsize = 20
- g.triangle_plot(
- [Tsample], filled=True,# contour_colors=['green', 'lightgreen']
- )
- return g
-
-
-def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None,
- labels=None, ranges=None):
- """Make the triangle plot."""
- if hasattr(args, 'plot_elements'):
- if not args.plot_angles and not args.plot_elements:
- return
- elif not args.plot_angles:
- return
-
- if not isinstance(infile, np.ndarray):
- raw = np.load(infile)
- else:
- raw = infile
- print 'raw.shape', raw.shape
- print 'raw', raw
-
- make_dir(outfile), make_dir
- if fig_text is None:
- fig_text = gen_figtext(args)
-
- if labels is None: axes_labels = llh_paramset.labels
- else: axes_labels = labels
- if ranges is None: ranges = llh_paramset.ranges
-
- if args.plot_angles:
- print "Making triangle plots"
- Tchain = raw
- g = plot_Tchain(Tchain, axes_labels, ranges)
-
- mpl.pyplot.figtext(0.6, 0.7, fig_text, fontsize=20)
-
- # for i_ax_1, ax_1 in enumerate(g.subplots):
- # for i_ax_2, ax_2 in enumerate(ax_1):
- # if i_ax_1 == i_ax_2:
- # itv = interval(Tchain[:,i_ax_1], percentile=90.)
- # for l in itv:
- # ax_2.axvline(l, color='gray', ls='--')
- # ax_2.set_title(r'${0:.2f}_{{{1:.2f}}}^{{+{2:.2f}}}$'.format(
- # itv[1], itv[0]-itv[1], itv[2]-itv[1]
- # ), fontsize=10)
-
- # if not args.fix_mixing:
- # sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
- # itv = interval(Tchain[:,sc_index], percentile=90.)
- # mpl.pyplot.figtext(
- # 0.5, 0.3, 'Scale 90% Interval = [1E{0}, 1E{1}], Center = '
- # '1E{2}'.format(itv[0], itv[2], itv[1])
- # )
-
- for of in outformat:
- print 'Saving', outfile+'_angles.'+of
- g.export(outfile+'_angles.'+of)
-
- if not hasattr(args, 'plot_elements'):
- return
-
- if args.plot_elements:
- print "Making triangle plots"
- if args.fix_mixing_almost:
- raise NotImplementedError
- nu_index = llh_paramset.from_tag(ParamTag.NUISANCE, index=True)
- fr_index = llh_paramset.from_tag(ParamTag.MMANGLES, index=True)
- sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
- if not args.fix_source_ratio:
- sr_index = llh_paramset.from_tag(ParamTag.SRCANGLES, index=True)
-
- nu_elements = raw[:,nu_index]
- fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
- sc_elements = raw[:,sc_index]
- if not args.fix_source_ratio:
- sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
- if args.fix_source_ratio:
- Tchain = np.column_stack(
- [nu_elements, fr_elements, sc_elements]
- )
- else:
- Tchain = np.column_stack(
- [nu_elements, fr_elements, sc_elements, sr_elements]
- )
-
- trns_ranges = np.array(ranges)[nu_index,].tolist()
- trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
- if args.fix_mixing is not MixingScenario.NONE:
- trns_axes_labels += \
- [r'\mid \tilde{U}_{e1} \mid' , r'\mid \tilde{U}_{e2} \mid' , r'\mid \tilde{U}_{e3} \mid' , \
- r'\mid \tilde{U}_{\mu1} \mid' , r'\mid \tilde{U}_{\mu2} \mid' , r'\mid \tilde{U}_{\mu3} \mid' , \
- r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
- trns_ranges += [(0, 1)] * 9
- if not args.fix_scale:
- trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
- trns_ranges += [np.array(ranges)[sc_index].tolist()]
- if not args.fix_source_ratio:
- trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
- trns_ranges += [(0, 1)] * 3
-
- g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)
-
- if args.data is DataType.REAL:
- plt.text(0.8, 0.7, 'IceCube Preliminary', color='red', fontsize=15,
- ha='center', va='center')
- elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
- plt.text(0.8, 0.7, 'IceCube Simulation', color='red', fontsize=15,
- ha='center', va='center')
-
- mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
- for of in outformat:
- print 'Saving', outfile+'_elements'+of
- g.export(outfile+'_elements.'+of)
-
-
-def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
- """Make MultiNest factor or LLH value plot."""
- print 'Making Statistic plot'
- fig_text = gen_figtext(args)
- if label is not None: fig_text += '\n' + label
-
- print 'data', data
- print 'data.shape', data.shape
- print 'outfile', outfile
- try:
- scales, statistic = ma.compress_rows(data).T
- lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
- tck, u = splprep([scales, statistic], s=0)
- except:
- return
- sc, st = splev(np.linspace(0, 1, 1000), tck)
- scales_rm = sc[sc >= scales[1]]
- statistic_rm = st[sc >= scales[1]]
-
- min_idx = np.argmin(scales)
- null = statistic[min_idx]
- # fig_text += '\nnull lnZ = {0:.2f}'.format(null)
-
- if args.stat_method is StatCateg.BAYESIAN:
- reduced_ev = -(statistic_rm - null)
- elif args.stat_method is StatCateg.FREQUENTIST:
- reduced_ev = -2*(statistic_rm - null)
-
- fig = plt.figure(figsize=(7, 5))
- ax = fig.add_subplot(111)
-
- xlims = SCALE_BOUNDARIES[args.dimension]
- ax.set_xlim(xlims)
- ax.set_xlabel(r'${\rm log}_{10}\left[\Lambda^{-1}_{'+ \
- r'{0}'.format(args.dimension)+r'}'+ \
- get_units(args.dimension)+r'\right]$', fontsize=16)
-
- if args.stat_method is StatCateg.BAYESIAN:
- ax.set_ylabel(r'$\text{Bayes\:Factor}\:\left[\text{ln}\left(B_{0/1}\right)\right]$')
- elif args.stat_method is StatCateg.FREQUENTIST:
- ax.set_ylabel(r'$-2\Delta {\rm LLH}$')
-
- # ymin = np.round(np.min(reduced_ev) - 1.5)
- # ymax = np.round(np.max(reduced_ev) + 1.5)
- # ax.set_ylim((ymin, ymax))
-
- ax.scatter(scales[1:], -(statistic[1:]-null), color='r')
- ax.plot(scales_rm, reduced_ev, color='k', linewidth=1, alpha=1, ls='-')
-
- ax.axhline(y=np.log(10**(BAYES_K)), color='red', alpha=1., linewidth=1.2, ls='--')
- ax.axvline(x=lim, color='red', alpha=1., linewidth=1.2, ls='--')
-
- at = AnchoredText(
- fig_text, prop=dict(size=10), frameon=True, loc=4
- )
- at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
- ax.add_artist(at)
- make_dir(outfile)
- for of in outformat:
- print 'Saving as {0}'.format(outfile+'.'+of)
- fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
-
-
-def plot_table_sens(data, outfile, outformat, args, show_lvatmo=True):
- print 'Making TABLE sensitivity plot'
- argsc = deepcopy(args)
-
- dims = args.dimensions
- srcs = args.source_ratios
- if args.texture is Texture.NONE:
- textures = [Texture.OET, Texture.OUT]
- else:
- textures = [args.texture]
-
- if len(srcs) > 3:
- raise NotImplementedError
-
- xlims = (-60, -20)
- ylims = (0.5, 1.5)
-
- colour = {2:'red', 1:'blue', 0:'green'}
- rgb_co = {2:[1,0,0], 1:[0,0,1], 0:[0.0, 0.5019607843137255, 0.0]}
-
- fig = plt.figure(figsize=(8, 6))
- gs = gridspec.GridSpec(len(dims), 1)
- gs.update(hspace=0.15)
-
- first_ax = None
- legend_log = []
- legend_elements = []
-
- for idim, dim in enumerate(dims):
- print '|||| DIM = {0}'.format(dim)
- argsc.dimension = dim
- gs0 = gridspec.GridSpecFromSubplotSpec(
- len(textures), 1, subplot_spec=gs[idim], hspace=0
- )
-
- for itex, tex in enumerate(textures):
- argsc.texture = tex
- ylabel = texture_label(tex, dim)
- # if angles == 2 and ian == 0: continue
- ax = fig.add_subplot(gs0[itex])
-
- if first_ax is None:
- first_ax = ax
-
- ax.set_xlim(xlims)
- ax.set_ylim(ylims)
- ax.set_yticks([], minor=True)
- ax.set_yticks([1.], minor=False)
- ax.set_yticklabels([ylabel], fontsize=13)
- ax.yaxis.tick_right()
- for xmaj in ax.xaxis.get_majorticklocs():
- ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
- ax.get_xaxis().set_visible(False)
- if itex == len(textures) - 2:
- ax.spines['bottom'].set_alpha(0.6)
- elif itex == len(textures) - 1:
- ax.text(
- -0.04, 1.0, '$d = {0}$'.format(dim), fontsize=16,
- rotation='90', verticalalignment='center',
- transform=ax.transAxes
- )
- # dim_label_flag = False
- ax.spines['top'].set_alpha(0.6)
- ax.spines['bottom'].set_alpha(0.6)
-
- for isrc, src in enumerate(srcs):
- print '== src', src
- argsc.source_ratio = src
-
- if dim in PLANCK_SCALE.iterkeys():
- ps = np.log10(PLANCK_SCALE[dim])
- if ps < xlims[0]:
- ax.annotate(
- s='', xy=(xlims[0], 1), xytext=(xlims[0]+1, 1),
- arrowprops={'arrowstyle': '->, head_length=0.2',
- 'lw': 1, 'color':'purple'}
- )
- elif ps > xlims[1]:
- ax.annotate(
- s='', xy=(xlims[1]-1, 1), xytext=(xlims[1], 1),
- arrowprops={'arrowstyle': '<-, head_length=0.2',
- 'lw': 1, 'color':'purple'}
- )
- else:
- ax.axvline(x=ps, color='purple', alpha=1., linewidth=1.5)
-
- try:
- scales, statistic = ma.compress_rows(data[idim][isrc][itex]).T
- except: continue
- lim = get_limit(deepcopy(scales), deepcopy(statistic), argsc, mask_initial=True)
- if lim is None: continue
-
- ax.axvline(x=lim, color=colour[isrc], alpha=1., linewidth=1.5)
- ax.add_patch(patches.Rectangle(
- (lim, ylims[0]), 100, np.diff(ylims), fill=True,
- facecolor=colour[isrc], alpha=0.3, linewidth=0
- ))
-
- if isrc not in legend_log:
- legend_log.append(isrc)
- label = r'$\left('+r'{0}'.format(solve_ratio(src)).replace('_',':')+ \
- r'\right)_{\text{S}}\:\text{at\:source}$'
- legend_elements.append(
- Patch(facecolor=rgb_co[isrc]+[0.3],
- edgecolor=rgb_co[isrc]+[1], label=label)
- )
-
- if itex == len(textures)-1 and show_lvatmo:
- LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
- ax.add_patch(patches.Rectangle(
- (LV_lim[1], ylims[0]), LV_lim[0]-LV_lim[1], np.diff(ylims),
- fill=False, hatch='\\\\'
- ))
-
- ax.get_xaxis().set_visible(True)
- ax.set_xlabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda^{-1}_{d}\:/\:{\rm GeV}^{-d+4})\: ]$',
- labelpad=5, fontsize=19)
- ax.tick_params(axis='x', labelsize=16)
-
- purple = [0.5019607843137255, 0.0, 0.5019607843137255]
- if show_lvatmo:
- legend_elements.append(
- Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube, Nature.Phy.14,961(2018)')
- )
- legend_elements.append(
- Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
- )
- legend = first_ax.legend(
- handles=legend_elements, prop=dict(size=11), loc='upper left',
- title='Excluded regions', framealpha=1., edgecolor='black',
- frameon=True
- )
- first_ax.set_zorder(10)
- plt.setp(legend.get_title(), fontsize='11')
- legend.get_frame().set_linestyle('-')
-
- ybound = 0.595
- if args.data is DataType.REAL:
- # fig.text(0.295, 0.684, 'IceCube Preliminary', color='red', fontsize=13,
- fig.text(0.278, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
- elif args.data is DataType.REALISATION:
- fig.text(0.278, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
- else:
- fig.text(0.278, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
-
- make_dir(outfile)
- for of in outformat:
- print 'Saving plot as {0}'.format(outfile+'.'+of)
- fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
-
-
-def plot_x(data, outfile, outformat, args, normalise=False):
- """Limit plot as a function of the source flavour ratio for each operator
- texture."""
- print 'Making X sensitivity plot'
- dim = args.dimension
- if dim < 5: normalise = False
- srcs = args.source_ratios
- x_arr = np.array([i[0] for i in srcs])
- if args.texture is Texture.NONE:
- textures = [Texture.OEU, Texture.OET, Texture.OUT]
- else:
- textures = [args.texture]
-
- # Rearrange data structure
- r_data = np.full((
- data.shape[1], data.shape[0], data.shape[2], data.shape[3]
- ), np.nan)
-
- for isrc in xrange(data.shape[0]):
- for itex in xrange(data.shape[1]):
- r_data[itex][isrc] = data[isrc][itex]
- r_data = ma.masked_invalid(r_data)
- print r_data.shape, 'r_data.shape'
-
- fig = plt.figure(figsize=(7, 6))
- ax = fig.add_subplot(111)
-
- ylims = SCALE_BOUNDARIES[dim]
- if normalise:
- if dim == 5: ylims = (-24, -8)
- if dim == 6: ylims = (-12, 8)
- if dim == 7: ylims = (0, 20)
- if dim == 8: ylims = (12, 36)
- else:
- if dim == 3: ylims = (-28, -22)
- if dim == 4: ylims = (-35, -26)
- if dim == 5: SCALE_BOUNDARIES[5]
- xlims = (0, 1)
-
- colour = {0:'red', 2:'blue', 1:'green'}
- rgb_co = {0:[1,0,0], 2:[0,0,1], 1:[0.0, 0.5019607843137255, 0.0]}
-
- legend_log = []
- legend_elements = []
- labelsize = 13
- largesize = 17
-
- ax.set_xlim(xlims)
- ax.set_ylim(ylims)
- xticks = [0, 1/3., 0.5, 2/3., 1]
- # xlabels = [r'$0$', r'$\frac{1}{3}$', r'$\frac{1}{2}$', r'$\frac{2}{3}$', r'$1$']
- xlabels = [r'$0$', r'$1 / 3$', r'$1/2$', r'$2/3$', r'$1$']
- ax.set_xticks([], minor=True)
- ax.set_xticks(xticks, minor=False)
- ax.set_xticklabels(xlabels, fontsize=largesize)
- if dim != 4 or dim != 3:
- yticks = range(ylims[0], ylims[1], 2) + [ylims[1]]
- ax.set_yticks(yticks, minor=False)
- if dim == 3 or dim == 4:
- yticks = range(ylims[0], ylims[1], 1) + [ylims[1]]
- ax.set_yticks(yticks, minor=False)
- # for ymaj in ax.yaxis.get_majorticklocs():
- # ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.2, linewidth=1)
- for xmaj in xticks:
- if xmaj == 1/3.:
- ax.axvline(x=xmaj, ls='--', color='gray', alpha=0.5, linewidth=0.3)
- # else:
- # ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
-
- ax.text(
- (1/3.)+0.01, 0.01, r'$(0.33:0.66:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom'
- )
- ax.text(
- 0.96, 0.01, r'$(1:0:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom', ha='left'
- )
- ax.text(
- 0.01, 0.01, r'$(0:1:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom'
- )
- yl = 0.55
- if dim == 3: yl = 0.65
- ax.text(
- 0.03, yl, r'${\rm \bf Excluded}$', fontsize=largesize,
- transform=ax.transAxes, color = 'g', rotation='vertical', zorder=10
- )
- ax.text(
- 0.95, 0.55, r'${\rm \bf Excluded}$', fontsize=largesize,
- transform=ax.transAxes, color = 'b', rotation='vertical', zorder=10
- )
-
- for itex, tex in enumerate(textures):
- print '|||| TEX = {0}'.format(tex)
- lims = np.full(len(srcs), np.nan)
-
- for isrc, src in enumerate(srcs):
- x = src[0]
- print '|||| X = {0}'.format(x)
- args.source_ratio = src
- d = r_data[itex][isrc]
- if np.sum(d.mask) > 2: continue
- scales, statistic = ma.compress_rows(d).T
- lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
- if lim is None: continue
- if normalise:
- lim -= np.log10(PLANCK_SCALE[dim])
- lims[isrc] = lim
-
- lims = ma.masked_invalid(lims)
- size = np.sum(~lims.mask)
- if size == 0: continue
-
- print 'x_arr, lims', zip(x_arr, lims)
- if normalise:
- zeropoint = 100
- else:
- zeropoint = 0
- lims[lims.mask] = zeropoint
-
- l0 = np.argwhere(lims == zeropoint)[0]
- h0 = len(lims) - np.argwhere(np.flip(lims, 0) == zeropoint)[0]
- lims[int(l0):int(h0)] = zeropoint
-
- x_arr_a = [x_arr[0]-0.1] + list(x_arr)
- x_arr_a = list(x_arr_a) + [x_arr_a[-1]+0.1]
- lims = [lims[0]] + list(lims)
- lims = list(lims) + [lims[-1]]
-
- s = 0.2
- g = 2
- if dim == 3 and tex == Texture.OUT:
- s = 0.4
- g = 4
- if dim in (4,5) and tex == Texture.OUT:
- s = 0.5
- g = 5
- if dim == 7 and tex == Texture.OET:
- s = 1.6
- g = 2
- if dim == 7 and tex == Texture.OUT:
- s = 2.0
- g = 20
- if dim == 8 and tex == Texture.OET:
- s = 0.8
- g = 6
- if dim == 8 and tex == Texture.OUT:
- s = 1.7
- g = 8
-
- # ax.scatter(x_arr_a, lims, color='black', s=1)
- tck, u = splprep([x_arr_a, lims], s=0, k=1)
- x, y = splev(np.linspace(0, 1, 200), tck)
- tck, u = splprep([x, y], s=s)
- x, y = splev(np.linspace(0, 1, 400), tck)
- y = gaussian_filter(y, sigma=g)
- ax.fill_between(x, y, zeropoint, color=rgb_co[itex]+[0.3])
- # ax.scatter(x, y, color='black', s=1)
- # ax.scatter(x_arr_a, lims, color=rgb_co[itex], s=8)
-
- if itex not in legend_log:
- legend_log.append(itex)
- # label = texture_label(tex, dim)[:-1] + r'\:{\rm\:texture}$'
- label = texture_label(tex, dim)[:-1] + r'\:({\rm this\:work})$'
- legend_elements.append(
- Patch(facecolor=rgb_co[itex]+[0.3],
- edgecolor=rgb_co[itex]+[1], label=label)
- )
-
- LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
- if normalise:
- LV_lim -= np.log10(PLANCK_SCALE[dim])
- ax.add_patch(patches.Rectangle(
- (xlims[0], LV_lim[1]), np.diff(xlims), LV_lim[0]-LV_lim[1],
- fill=False, hatch='\\\\'
- ))
-
- if dim in PLANCK_SCALE:
- ps = np.log10(PLANCK_SCALE[dim])
- if normalise and dim == 6:
- ps -= np.log10(PLANCK_SCALE[dim])
- ax.add_patch(Arrow(
- 0.24, -0.009, 0, -5, width=0.12, capstyle='butt',
- facecolor='purple', fill=True, alpha=0.8,
- edgecolor='darkmagenta'
- ))
- ax.add_patch(Arrow(
- 0.78, -0.009, 0, -5, width=0.12, capstyle='butt',
- facecolor='purple', fill=True, alpha=0.8,
- edgecolor='darkmagenta'
- ))
-
- ax.text(
- 0.26, 0.5, r'${\rm \bf Quantum\:Gravity\:Frontier}$',
- fontsize=largesize-2, transform=ax.transAxes, va='top',
- ha='left', color='purple'
- )
- if dim > 5:
- ax.axhline(y=ps, color='purple', alpha=1., linewidth=1.5)
-
- cpt = r'c' if dim % 2 == 0 else r'a'
- if normalise:
- ft = r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' + \
- r'{0}'.format(args.dimension)+r')}\cdot{\rm E}_{\:\rm P}'
- if dim > 5: ft += r'^{\:'+ r'{0}'.format(args.dimension-4)+ r'}'
- ft += r'\right )\: ]$'
- fig.text(
- 0.01, 0.5, ft, ha='left',
- va='center', rotation='vertical', fontsize=largesize
- )
- else:
- fig.text(
- 0.01, 0.5,
- r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' +
- r'{0}'.format(args.dimension)+r')}\:' + get_units(args.dimension) +
- r'\right )\: ]$', ha='left',
- va='center', rotation='vertical', fontsize=largesize
- )
-
- ax.set_xlabel(
- r'${\rm Source\:Composition}\:[\:\left (\:x:1-x:0\:\right )_\text{S}\:]$',
- labelpad=10, fontsize=largesize
- )
- ax.tick_params(axis='x', labelsize=largesize-1)
-
- purple = [0.5019607843137255, 0.0, 0.5019607843137255]
- # legend_elements.append(
- # Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
- # )
- legend_elements.append(
- Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube [TODO]')
- )
- legend = ax.legend(
- handles=legend_elements, prop=dict(size=labelsize-2),
- loc='upper center', title='Excluded regions', framealpha=1.,
- edgecolor='black', frameon=True, bbox_to_anchor=(0.5, 1)
- )
- plt.setp(legend.get_title(), fontsize=labelsize)
- legend.get_frame().set_linestyle('-')
-
- # ybound = 0.14
- # if args.data is DataType.REAL:
- # fig.text(0.7, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
- # elif args.data is DataType.REALISATION:
- # fig.text(0.7, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
- # else:
- # fig.text(0.7, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
-
- make_dir(outfile)
- for of in outformat:
- print 'Saving plot as {0}'.format(outfile + '.' + of)
- fig.savefig(outfile + '.' + of, bbox_inches='tight', dpi=150)