aboutsummaryrefslogtreecommitdiffstats
path: root/utils
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-03-19 18:37:56 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-03-19 18:37:56 -0500
commita6ced28fe29f5dc82108f14e310a0c6b5f04b3c7 (patch)
tree3af32e2953c79d64c11ca1d6e4ba98e300476fc7 /utils
parent38df6facfecb16cc24f829770aff77d24050f7f4 (diff)
downloadGolemFlavor-a6ced28fe29f5dc82108f14e310a0c6b5f04b3c7.tar.gz
GolemFlavor-a6ced28fe29f5dc82108f14e310a0c6b5f04b3c7.zip
bug fixes
Diffstat (limited to 'utils')
-rw-r--r--utils/gf.py12
-rw-r--r--utils/mcmc.py9
-rw-r--r--utils/misc.py4
3 files changed, 11 insertions, 14 deletions
diff --git a/utils/gf.py b/utils/gf.py
index 766c161..99b1f24 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -15,7 +15,7 @@ from functools import partial
import GolemFitPy as gf
from utils.enums import *
-from utils.misc import enum_keys, enum_parse
+from utils.misc import enum_parse
def data_distributions(fitter):
@@ -81,25 +81,25 @@ def gen_steering_params(steering_categ, quiet=False):
def gf_argparse(parser):
parser.add_argument(
'--data', default='real', type=partial(enum_parse, c=DataType),
- choices=enum_keys(DataType), help='select datatype'
+ choices=DataType, help='select datatype'
)
parser.add_argument(
'--ast', default='baseline', type=partial(enum_parse, c=SteeringCateg),
- choices=enum_keys(SteeringCateg),
+ choices=SteeringCateg,
help='use asimov/fake dataset with specific steering'
)
parser.add_argument(
'--aft', default='hesespl', type=partial(enum_parse, c=FitCateg),
- choices=enum_keys(FitCateg),
+ choices=FitCateg,
help='use asimov/fake dataset with specific Fit'
)
parser.add_argument(
'--axs', default='nom', type=partial(enum_parse, c=XSCateg),
- choices=enum_keys(XSCateg),
+ choices=XSCateg,
help='use asimov/fake dataset with xs scaling'
)
parser.add_argument(
'--priors', default='uniform', type=partial(enum_parse, c=Priors),
- choices=enum_keys(Priors), help='Bayesian priors'
+ choices=Priors, help='Bayesian priors'
)
diff --git a/utils/mcmc.py b/utils/mcmc.py
index aebe12f..995a338 100644
--- a/utils/mcmc.py
+++ b/utils/mcmc.py
@@ -18,9 +18,11 @@ import tqdm
import numpy as np
from scipy.stats import multivariate_normal
+import GolemFitPy as gf
+
from utils import fr as fr_utils
from utils.enums import Likelihood
-from utils.misc import enum_keys, enum_parse, make_dir, parse_bool
+from utils.misc import enum_parse, make_dir, parse_bool
def lnprior(theta, paramset):
@@ -65,7 +67,7 @@ def mcmc(p0, triangle_llh, lnprior, ndim, nwalkers, burnin, nsteps, ntemps=1, th
def mcmc_argparse(parser):
parser.add_argument(
'--likelihood', default='gaussian', type=partial(enum_parse, c=Likelihood),
- choices=enum_keys(Likelihood), help='likelihood contour'
+ choices=Likelihood, help='likelihood contour'
)
parser.add_argument(
'--run-mcmc', type=parse_bool, default='True',
@@ -137,14 +139,13 @@ def triangle_llh(theta, args):
)
fr = fr_utils.u_to_fr((fr1, fr2, fr3), u)
- fr_bf = args.measured_ratio
if args.likelihood is Likelihood.FLAT:
return 1.
elif args.likelihood is Likelihood.GAUSSIAN:
+ fr_bf = args.measured_ratio
return gaussian_llh(fr, fr_bf, args.sigma_ratio)
elif args.likelihood is Likelihood.GOLEMFIT:
raise NotImplementedError('TODO')
- import GolemFitPy as gf
from collections import namedtuple
datapaths = gf.DataPaths()
IceModels = namedtuple('IceModels', 'std_half2')
diff --git a/utils/misc.py b/utils/misc.py
index 2ff0664..108a458 100644
--- a/utils/misc.py
+++ b/utils/misc.py
@@ -252,10 +252,6 @@ def print_args(args):
print '== {0:<25} = {1}'.format(key, arg_vars[key])
-def enum_keys(e):
- return e.__members__.keys()
-
-
def enum_parse(s, c):
return c[s.upper()]